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Preface

Quelli che s’innamoran di pratica sanza scienzia,

son come 'l nocchieri ch’entra in navilio sanza timone o bussola,

che mai ha la certezza dove si vada.

Leonardo da Vinci, Codex G, Bibliothéque de UInstitut de France, Paris.

‘This books stems from its ancestor Digital Transmission Theory, published by
Prentice-Hall in 1987 and now out of print. Following the suggestion of several
colleagues who complained about the unavailability of a textbook they liked and
adopted in their courses, two out of its three former authors have deeply revised
and updated the old book, laying a strong emphasis on wireless communications.
We hope that those who liked the previous book will find again its flavor here,
while new readers, untouched by nostalgia, will judge it favorably.

In keeping with the cliché “every edition is an addition,” we started plan-
ning what new topics were needed in a textbook trying to provide a substantial
covering of the discipline. However, we immediately became aware that an in-
depth discussion of the many things we deemed appropriate for inclusion would
quickly make this book twice the size of the previous one. It would certainly be
nice to write, as in the Mahabharata, “what is in this book, you can find some-
where else; but what is not in it, you cannot find anywhere.” Yet such a book,
like Borges’ map drawn to 1:1 scale, would not hit the mark. For this reason we
aimed at writing an entirely new book, whose focus was on (although not totally
restricted to) wireless digital transmission, an area whose increasing relevance
in these days need not be stressed. Even with this shift in focus, we are aware
that many things were left out, so that the reader should not expect an encyclope-
dic coverage of the discipline, but rather a relatively thorough coverage of some
important parts of it.

Some readers may note with dismay that in a book devoted, at least partially,
to wireless communications, there is no description of wireless systems. If we
were to choose an icon for this book, we would choose Carroll’s Cheshire Cat of
Wonderland. As Martin Gardner notes in his “Annotated Alice,” the phrase “grin
without a cat” is not a bad description of pure mathematics. Similarly, we think

v
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6 1. Introduction and motivation

curring at a certain rate. The source encoder converts the symbol sequence into
a binary sequence by assigning code words to the symbols of the input sequence
according to a specified rule. This encoding process has the goal of reducing the
redundancy of the source (i.e., of obtaining an output data rate approaching R,).
At the receiver, the source decoder will convert the binary output of the channel
decoder into a symbol sequence that is passed to the user.

Because the redundancy of the source information has been removed, the
binary sequence at the output of the source encoder is highly vulnerable to er-
rors occurring during the process of transmitting the information to its desti-
nation. The channel encoder introduces a controlled redundancy into the binary
sequence so as to achieve highly reliable transmissions. At the receiver, the chan-
nel decoder recovers the information-bearing bits from the coded binary stream.
Both the encoder and decoder can operate either in block mode or in a continuos
sequential mode.

The communication channel provides the electrical connection between the
source and the destination. The channel may be a pair of wires, a telephone link,
an optical fiber, or free space over which the signal is radiated in the form of
electromagnetic waves. In all cases, communication channels introduce various
forms of impairments. Having finite bandwidths, they distort the signal in am-
plitude and phase. Moreover, the signal is attenuated and corrupted by unwanted
additive and/or multiplicative random signals referred to as noise or fading. For
these reasons, an exact replica of the transmitted signal cannot be obtained at
the receiver input. The primary objective of a good communication system de-
sign is to counteract the effects of noise and distortion so as to achieve a faithful
estimate of the transmitted signal.

The modulator converts the input binary stream into a waveform sequence
suitable for transmission over the available channel. Being a powerful tool in
the hands of the designer, modulation will receive considerable attention in this
book. It involves a large number of choices, such as the number of waveforms,
their shape, duration, and bandwidth, the power (average and/or peak), and more,
allowing great flexibility in the system design. At the receiver, the demodulator
extracts the binary sequence (hard demodulation) or suitably sufficient statistics
(soft demodulation) from the received waveforms. Due to the impairment intro-
duced by the channel, this process entails the possibility of errors between the
input sequence to the modulator and the the output sequence from the demodu-
lator (in the case of hard decoding), or a poor sufficient statistics (in the case of
soft demodulation). A result of both types of degradation is a nonzero bit error
probability. Tt is the goal of the channel decoder to exploit the redundancy in-
troduced by the channel encoder to retrieve the transmitted information either by
correcting the binary errors of the demodulator (hard decoding), or by suitably
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processing the sufficient statistics (soft decoding).

In practical point-to-point communication systems, other functional blocks
exist, which for simplicity are not shown in Fig. 1.4. They are, for example,
the adaptive equalizer, which reduces the channel distortions, the carrier and
clock synchronizers, which allow coherent demodulation and proper sampling
of the received signals, scramblers and descramblers, which are used to prevent
unwanted strings of symbols at the channel input, and enciphering and decipher-
ing devices, which ensure secure communication. Some of these blocks will be
decribed in the book.

The book is organized as follows. Chapter 2 reviews the main results from the
theory of random processes, spectral analysis, and detection theory, which can
be considered as prerequisites to the remaining chapters. In Chapter 3 we look at
probabilistic models for discrete information sources and communication chan-
nels. The main results from classical information theory are introduced as a con-
ceptual background and framework for the successive material. Chapter 4 is de-
voted to memoryless waveform transmission over additive Gaussian noise chan-
nels. By using results from detection theory, optimum demodulator structures are
derived, and the calculation of their error probabilities is presented. A distinction
is made between coherent and noncoherent demodulation. In Chapter 5, the main
modulation techniques employed for digital transmission are described, and their
performances are compared in terms of error probability, energy, and bandwidth
efficiency. Chapter 6 presents some modulation schemes specifically intended
for transmission on wireless channels. In Chapter 7 we show how to evaluate
the performance of systems affected by intersymbol interference, derive the op-
timization criteria for the overall system transfer function, and, finally, discuss
the maximum-likelihood receiver structure. Chapter 8 is devoted to receivers for
intersymbol-interference channels: adaptive receivers and channel equalization
are covered. Chapter 9 deals with carrier and clock synchronization problems in
modems. Chapter 10 describes linear block codes applied to improve the chan-
nel reliability, by error detection and correction. The most important classes of
block codes and a few decoding techniques are described. The first part of Chap-
ter 11 is devoted to linear convolutional codes. Their performance in terms of bit
error probability is analyzed, and the maximum-likelihood decoding algorithm,
the celebrated Viterbi algorithm, is described in detail (Appendix F is also de-
voted to it and to a maximum-a-posteriori decoding algorithm). The second part
of Chapter 11 deals with concatenated codes, and particular attention is paid to
the recently discovered, high-performance turbo codes. Chapter 12 covers the
important topic of trellis-coded modulation, a technique to improve the chan-
nel reliability that merges modulation and channel coding in a very successful
manner. Chapter 13 introduces models of fading channels and describes tech-
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niques for analysis and design of coding schemes operating on them. Finally,
Chapter 14 deals with digital transmission over nonlinear channels.

A mathematical introduction

Signal theory, system theory, probability, and stochastic processes are the basic
mathematical tools for the analysis and design of digital communication systems.
Since a comprehensive treatment of all these topics requires several volumes,
rather than attempting a comprehensive survey we devote this chapter to a selec-
tion of some points that are especially important in the developments that follow.
The topics selected and the depth of their presentation were decided according
to two criteria. First, where possible, laborious and sophisticated mathematical
apparatuses have been omitted. This entails a certain loss of rigor, but it should
improve the presentation of the subject matter. Second, those topics most likely
to be familiar to the reader are reviewed very quickly, whereas more attention is
devoted to certain specialized points of particular relevance for applications.

The topics covered in this chapter are deterministic and random signal the-
ory for both discrete- and continuous-time models, linear and nonlinear system
theory, and detection theory. Extensive bibliographical notes at the end of the
chapter will guide the reader wishing to become more conversant with a specific
topic.

2.1. Signals and systems

In this section we briefly present the basic concepts of the theory of linear and
certain nonlinear systems. We begin with the time-discrete model for signals and
systems and continue with the time-continuous model. To provide a higher level
of generality to our presentation, we introduce and extensively employ complex
time functions. The reasons for their use are explained in Section 2.4.

9



10 2. A mathematical introduction

2.1.1. Discrete signals and systems

A discrete-time signal is a sequence of real or.corflplex pumbers, dznote<d by
(z4)n2,, defined for every integer index n ranging in the interval ny < n_ _—'n,z,
The index n is usually referred to as the discrete time. Whenever n —d o0
and n, = oo, or when the upper and lower indexes need not be. specified, we
shall simply write (z.). A time-discrete syste.m, or for short a dzsc.rete syst;lm,
is a mapping of a sequence (z5), called the input .Of the system, into another
sequence (yn), called the output or response. We write

Yn = S[(zn)] @n

for the general element of the sequence (yn).. . .
A discrete system is linear if, for any pair of input signals (z7,), (z) and for
any pair of complex numbers A', A", the following holds:

S[(A'z, + A"z))] = A'S[(z)] + A"S[(z5)] 22)

Equation (2.2) means that if the system .inpl.xt is a linear combination of two
signals, its output is the same linear combination of the t.wo msPonses. y

A discrete system is time-invariant if the rule by wl.uch. an input sequepcelll
transformed into an output sequence does not change with time. Mathematically,
this is expressed by the condition

S[(l'n—k)] = YUn—k (23)
for all integers k. This is tantamount to saying thaF, if the input is delayed by &
time units, the output is delayed by the same quantity.

If (6,) denotes the “unit impulse™ sequence

= b =0 24
n 0, n#0

and S is a linear, time-invariant discrete system, its response (hn) to thel'mput
(6,) is called the (discrete) impulse response of the system. Given a linear,
time-invariant discrete system with impulse response (hn), 1t§ response to any
arbitrary input (z,) can be computed via the discrete convolution

o0

Yn = Z Tehn-k

k=-00

i hkrn—k (2.5)

k=-0c0

e i
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Xp Xn-1 Xn-2 Xn-L
D > D ----—> D
y y
S(') Yn= S(xm vy xn-L)

Figure 2.1: Transversal-filter implementation of a time-invariant discrete system with
memory L.

It may happen that the system output at time ¢, say y,, depends only on a certain
subset of the input sequence. In particular, the system is said to be causal if y,
depends only on ()4 _,- This means that the output at any given time depends
only on the past and present values of the input, and not on its future values. In
addition, the system is said to have a finite memory L if y, depends only on the
finite segment (z,,)%_,_, of the past input. When L = 0, and hence y, depends
only on z,, the system is called memoryless. For a linear time-invariant system,
causality implies h, = 0 for all n < 0. A linear time-invariant system with
finite memory L has an impulse response sequence (h,,) that may be nonzero
only for 0 < n < L. For this reason, a finite-memory system is often referred
to also as a finite impulse response (FIR) system. A system with memory L can
be implemented as in Fig. 2.1. The blocks labeled D denote unit-delay elements
(i.e., systems that respond to the input z,, with the output y,, = z,,_;). A cascade
of such unit-delay elements is called a shift register, and the resulting structure is
called a tapped delay line, or transversal, filter. Here the function S(- ) defining
the input-output relationship has L + 1 arguments. When the system is linear,
S(-) takes the form of a linear combination of its arguments:

L
S(Tns Tacty - Tnop) = D hxTpy (2.6)
k=0

In this case, the structure of Fig. 2.1 becomes the linear transversal filter of
Fig. 2.2.

Discrete Volterra systems
Consider a time-invariant, nonlinear discrete system with memory L, and assume

that the function S( -) is sufficiently regular to be expanded in a Taylor series in
a neighborhood of the originz, = 0, z,_;, = 0, ..., z,,_; = 0. We have the
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X, Xp-1 Xn2 Xn-L
[ D 3> D}4----—{D
ho hy hy h
2 > Y

Figure 2.2 Linear discrete transversal filter.

representation

L
1
Yo = S(ImIn-lv---)In—L)=h(0)+zh$ Zams

i=0
L L L L L @)
+ E E hg)xn—izn—j + E E Z hijkIﬂ—ixﬂ—jIﬂ—k +---(27)
i=0 j=0 i=0 j=0 k=0

called a discrete Volterra series. It is seen that the system is completely charac-
terized by the coefficients of the expansion, say
RO RO RD RS, ... 65 k=0,12- L

which are proportional to the partial derivatives of the function S( ’ ) at the ori-
gin. These are called the system’s Volterra coefficients. The expansion (2.7? can
be generalized to systems with infinite memory, although in the computational
practice only a finite number of terms will be retained. In general t!'le Volterra
system representation involves an infinite number of infinite summations. T'hus,
if a truncation of the series is not performed, we must associate with each series a
suitable convergence condition to guarantee that the representation is meaningful
(see, e.g., Rugh, 1981).

Example 2.1 Consider the discrete system shown in Fig. 2.3 and obtained by cascad-
ing a linear, time-invariant, causal system with impuise response (hn)toa memor?'less
nonlinear system with input-output relationship yn = g{wy). Assume that g‘( -.) is an
analytic function, with a Taylor series expansion in the neighborhood of the origin

glw) = E agw' 2.8)

=0

2.1. Signals and systems 13

Xn W,
—>1 (k) 8() > Yn=8Wa)

Figure 2.3: A discrete nonlinear system.
The input-output relationship for the system of Fig. 2.3 is then
o0
g <E hil‘n-i)
i=0

oo 00 00
= ag+a E hiTn—i + a2 E E h,;hj:!:-,._,;:!:n_j + - 2.9)
i=0 i=0 j=0

YUn

so that the Volterra coefficients for the system are:

RO = 0
Y = gk
KDY = ashib

The following should be observed. First, if g( - ) is a polynomial of degree K, the coef-
ficients ax 41, Gx+2, .-, in (2.8) are zero, so that only a finite number of summations
will appear in (2.9). Second, if the impulse response sequence (h») is finite (i.c., the
linear system of Fig. (2.3) has a finite memory), then all the summations in (2.9) will
include only a finite number of terms. O

Discrete signals and systems in the transform domain

Given a sequence (z,), we define its Fourier transform F{(z,)] as the function
of the frequency f defined as

XA S zaeminont (2.10)

n=-—cc

where j = /-1. X(f) is a periodic function of f with period 1, so it is cus-
tomary to consider it only in the interval —1 /2L f<L1 /2. The inverse Fourier
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transform yields the elements of the sequence (z,) in terms of X ()

ra= | Y2 (e df @.11)
-1/2

The Fourier transform H(f) of the impulse response (hn) of a liflear time-
invariant system is called the frequency response, or transfer function, of the
system. We call |H(f)| the amplitude and arg[H (f )] the phfzse of the transfer
function. The derivative of arg[H (f)] taken with respect to f is ca!led the group
delay of the system. A basic property of the Fourier transform 1s‘that the re-
sponse of a linear, time-invariant discrete system with. transfer function H(f) to
a sequence with Fourier transform X (f) has the Fourier transform H()X()-

2.1.2. Continuous signals and systems

A continuous-time signal is a real or complex function z(t) of the real variable
t (the time). Unless otherwise specified, the time is assumed to range frorn. -0
to 0o. A continuous-time system is a mapping of a signal z(t)', the system input,
into another signal y(t), called the ousput or response. We write

y(t) = S[=(2)] (2.12)

A continuous-time system is linear if for any pair of ir}put signals z'(t), z"(¢)
and for any pair of complex numbers A’, A”, the following holds:

S[A'Z (t) + A"z"(t)] = A'S[z'(t)] + A"S[z" (1)) (2.13)

A continuous-time system is time-invariant if (2.12) implies ’
Slz(t—T)]=yt-7) (2.14)
for all 7. Let §(¢) denote the delta function, characterized by the sifting property
/ °:° 5(t)p(t) dt = $(0) @.15)

valid for every function $(t) continuous at the origin. The response h(t) of a
linear, time-invariant continuous system to the input §(t) is called the impulse
response of the system. For a system with a known imp}llse response f'l(t)., the
response y(t) to any input signal z(t) can be computed via the convolution inte-

gral

il

/w z(r)h(t — 1) dr

—00

/w h(t)z(t — 1) dr (2.16)

y(t)

2.1.  Signals and systems 15
x(2) x(t-T) x(t-27) x(¢-LT)
T ' T ----—>1 T
€0 €l 3 L
|
> —> y(1)

Figure 2.4: Linear continuous transversal filter.

It may happen that the system output y(t) at time ¢ depends on the input z(t)
only through the values taken by z(t) in the time interval . If I = (—oo0, t], the
system is said to be causal. If I = (t — t,,t], 0 < ty < oo, the system is said
to have a finite memory ty. If I = {t} (i.e., the output at any given time depends
only on the input at the same time), the system is called memoryless. It is easily
seen from (2.16) that, for a linear time-invariant system, causality is equivalent
to having h(t) = O for all t < 0. A general time function h(t) with the latter
property is sometimes called causal.

A linear system is said to be stable if its response to any bounded input is
bounded. A linear, time-invariant system is stable if and only if its impulse
response is absolutely integrable.

Example 2.2 Figure 2.4 represents a linear, time-invariant continuous system with fi-
nite memory. The blocks labeled T are delay elements, that is, systems with impulse
response 0(t — T'). A cascade of such elements is called a (continuous) tapped delay

line and the structure of Fig. 2.4 a linear transversal filter. The system has an impulse
response

L
h(t) = ceb(t — £T) @.17)
=0

and a memory LT. O
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0 ®
e B2 0 oy = gtwe

Figure 2.5: A continuous nonlinear system.

Continuous Volterra systems

To motivate our general discussion of Volterra series, consider as an example the
time-invariant, nonlinear continuous system shown in Fig. 2.5. Assume that the
first block represents a linear time-invariant system with impulse response h(t)
and that g(-) is a function as in Example 2.1, so (2.8) holds. The input-output
relationship for this system can thus be expanded in the form

y(t) = ¢ [/_O:o h(r)z(t — 7) dT]
= aota [ hra(t—r)dr
+a; /_0; /_O:O h(r)h(r2)z(t — 1)z (t — 72) dry dry + - - - (2.18)
By defining
hy = ag
h(t) = ah() (2.19)

ha(ti, t2) = a2h(t1)h(t2)

Eq. (2.18) can be rewritten as
o0
ut) = ho+ [ m(rla(t-7)dr
—o0
o0 o0
+/ / hg(Tl,Tg)l'(t—Tl)l'(t—Tz)dTl dra+ -+ (2.20)
—00 J—-00

o0 o0 &
+/ / hk(Tl,Tg,...,Tk)[HI(t—Ti)dTi]+"'
- = i=1

Equations (2.19) and (2.20) represent the input-output relationship of the system
of Fig. 2.5. More generally, (2.20) without the definitions (2.19), that is, for a
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general set of functions hq, hi(t), h2(t1,%2), ..., provides an input-output rela-
tionship for nonlinear time-invariant continuous systems. The RHS of (2.20) is
called a Volrerra series, and the functions hg, h1(t), ka(t1,ts), ..., are called the
Volterra kernels of the system. As a linear, time-invariant continuous system is
completely characterized by its impulse response, so a nonlinear system whose
input-output relationship can be expressed as a Volterra series is completely char-
acterized by its Volterra kernels. It can be observed that the first-order kernel
hy(t) is simply the impulse response of a linear system. The higher-order ker-
nels can thus be viewed as higher-order impulse responses, which characterize
the various orders of nonlinearity of the system. The zero-order term hq accounts
for the response to a zero input.

It can be shown (see Problem 2.6) that a time-invariant system described by
a Volterra series is causal if and only if, for all k,

hk(tl,tz,...,tk)'—:o for all ti<0, i=1,2,...,k (221)

A Volterra series expansion can be made simpler if it is assumed that the system
kernels are symmetric functions of their arguments. That is, for every k > 2 any
of the k! possible permutations of the k arguments of hi(ty,ta,. .., ) leaves
the kernel unchanged. It can be proved (see Problem 2.5) that the assumption of
symmetric kernels does not entail any loss of generality.

Volterra series can be viewed as “Taylor series with memory.” As such they
share with Taylor series some limitations, a major one being slow convergence.
Moreover, the complexity in computation of the kth term of a Volterra series
increases quickly with increasing k. Thus, it is expedient to use Volterra series
only when the expansion (2.20) can be truncated to low-order terms, i.e., the
system is “mildly nonlinear.”

Continuous signals and systems in the transform domain

With the notation X (f) = F[z(t)] we shall denote the Fourier transform of the
signal z(¢); that is,

X(f)= /_: z(t)e ¥/t dt (2.22)

Given its Fourier transform X (f), the signal z(¢) can be recovered by computing
the inverse Fourier transform F X (f)]:

z(t) = /_o:o X(fyerfraf (2.23)

The Fourier transform of a signal is also called the amplitude spectrum of the
signal. If h(t) denotes the impulse response of a linear, time-invariant system,
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its Fourier transform H (f) is called the frequency response, ot transfer function,
of the system. We call |H(f)| the amplitude and arg [H(f)] the phase of the
transfer function. The derivative of arg [H(f)] taken with respect to f is called
the group delay of the system. It is seen from (2.22) that, when z(t) is a real
signal, the real part of X (f) is an even function of f, and the imaginary part is
an odd function of f. It follows that for a real z(t) the function | X(f)| is even,
and arg [X (f)] is odd.

An important property of Fourier transform is that it relates products and
convolutions of two signals z(t), y(t) with convolutions and products of their

Fourier transforms X (f) and Y(f):

Flz(t)y(t) = /_ ZX(a)Y( f—a)do (2.24)
and N
F [/_w”’(f)y(t - ) df] = X(HY(f) 2.25)

In particular, (2.25) implies that the output y(t) of a linear, time-invariant
system with a transfer function H(f) and an input signal z(t) has the amplitude
spectrum

Y(f) = H(HX(f)- (2.26)

Example 2.2 (continued) The transfer function of the system shown in Fig. 2.4 is
obtained by taking the Fourier transform of (2.17):

L
H(f) =3 cee . @27
£=0
It is left as an exercise for the reader to derive the conditions for which this system ex-

hibits a linear phase. a

Example 2.3 An important family of linear systems is provided by the Butterworth
filters. The transfer function of the nth-order low-pass Butterworth filter with cutoff

frequency f. is

k2

1
H(f) = —— 2.28
)= B.GF7) @28
where n
) Dn(s) é [s _ ejw(2i+n—1)/2n] (2.29)

1
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1.00
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S
= 50 =1
2
25
0
0 2.0

Fi‘g;:re 2.6: Amplitude of the transfer function of low-pass Butterworth filters of various
orders.

is an nth degree polynomial. Expressions of these polynomials for some values of n are

Di(s) = 1+s
Da(s) = 1+V2s+s? (2:30)
Dy(s) = 14+25+252+4°

Figure 2.6 shows the amplitude |H (f)| of the transfer function of the low-pass Butter-
worth filters for several values of their order n. It is seen that the curves of all orders pass

tl:roggh Lhe"0.707 point at f = f.. Asn — oo, |H(f)| approaches the ideal low-pass
(“brickwall”) characteristics:

|H(f)| ={ L lfl< fe @.31)

0, elsewhere.

a

2.2. Random processes

2.2.1. Discrete-time processes

A discrete-time random process, or random sequence, is a sequence (£,) of real
9r complex random variables (RV) defined on some sample space. The index n
is usually referred to as the discrete time. A discrete-time process is completely
characterized by providing the joint cumulative distribution functions (cdf) of
the N-tuples &1, &2, ..., &yn of RVs extracted from the sequence, for all
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integers i and N, N > 0. If the process is complex, these joint distributions are
the joint 2N-dimensional distributions of the real and imaginary components of
&ir1s - -+ Eirn. The simplest possible case occurs when the RVs in the sequence
are independent and identically distributed (iid). In this case the joint cdf of any
N-tuple of RVs factors into the product of individual marginal cdfs. For a real

process,
N

Ffi+1vfi+2,'"vfa+n ('Ti+1: Tit2," " !zi+N) = [I; Ff(zi+j) (2.32)
j=
where Fy(-) is the common cdf of the RVs. Thus, a sequence of iid RVs is
completely characterized by the single function Fe(-).

A random sequence is called stationary if for every N the joint distribution
function of €41, €it2, - - - » &ipnv does not depend on 4. In other words, a stationary
random sequence is one whose probabilistic properties do not depend on the
time origin, so that for any given integer & the sequences (&,) and (§n+k? are
identically distributed. An iid sequence extending fromn = —oo to +00 1s an
example of a stationary sequence.

The mean of a random sequence (£,) is the sequence (£,) of mean values

i 2 Elt4) (2.33)
The autocorrelation of (£,) is the two-index sequence (Tn,m) such that
Fam 2 Elgnéa] (234)
For a stationary sequence,

(@) p, does not depend on n, and

(b) rnm depends only on the difference n — . Thus, the autocorrelation
sequence has a single index.

Conditions (a) and (b), which are necessary for the stationarity of the se-
quence (£,), are generally not sufficient. If (a) and (b) hold true, we say that
(£,) is wide-sense (WS) stationary. Notice that wide-sense stationarity is ex-
ceedingly simpler to check for than stationarity. Thus, it is always expedient to
verify whether wide-sense stationarity is enough to prove the properties that are
needed. In practice, although stationarity is usually invoked, wide-sense station-
arity is often sufficient.
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Markov chains

For any real sequence (£,)3%, of independent RVs, we have, for every n,

Feuenmi 6a-2rb0(Tn | Tn1,Tn-2,. .-, T0) = F,(zn) (2.35)

where F¢, |¢,_, £nza,..co(* * ) denotes the conditional cdf of the random variable
&, given all the “past” RVs &,_1,&,-2, - - ., §. Equation (2.35) reflects the fact
that &, is independent of the past of the sequence. A first-step generalization
of (2.35) can be obtained by considering a situation in which, for any =,

Fenlenrbnznnto(Tn | Tac1,Tn-2,. .+, T0) = Fepguy (Tn | Tno1)  (2.36)

that is, &, depends on its past only through &,_;.

When (2.36) holds, (£,)2%2, is called a discrete-time (first-order) Markov pro-
cess. If in addition every £, can take only a finite number of possible values, say
the integers 1, 2, ..., g, then (&,) is called a (finite) Markov chain, and the val-
ues of &, are referred to as the states of the chain. To specify a Markov chain,
it suffices to give, for all timesn > 0 and j,k = 1,2,...,q, the probabilities
P{¢&, = 7} and P{{,+1 = k | &, = 5} The latter quantity is the probability that
the process will move to state k at time n + 1 given that it was in state j at time
n. This probability is called the one-step transition probability function of the
Markov chain.

A Markov chain is said to be homogeneous (or to have stationary transition
probabilities) if the transition probabilities P{£,m = k | & = j} depend only
on the time difference m and not on £. We then call

P = Plepm=k|&=5}, £20, m>1, jk=12...,q 237

the m-step transition probability function of the homogeneous Markov chain
(£0)2;. In other words, pg',:') is the conditional probability that the chain, be-
ing in state j at time £, will move to state & after m time instants. The one-step

transition probabilities pﬁ) are simply written pjy:

pix=P{len=k|&=3}, €20, jk=12,...,¢ (238)

These transition probabilities can be arranged into a ¢ x g transition matrix P:

Pu1 P2 o Pig
p=| P P2t P (2.39)
pql qu et qu
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The elements of P satisfy the conditions

pijOa j7k=11"'aq (240)
and .

Spir=1, i=1,2,...,¢9 (2.41)

k=1

(i.e., the sum of the entries in each row of P equals 1). Any squ.are matrix that
satisfies conditions (2.40) and (2.41) is called a stochastic matrix or a Markov

matrix. ) o
For a homogeneous Markov chain (£,)32, let w;’ denote the unconditiona

probability that state k occurs at time n; that is,
w =P{&. =k}, k=1,2,...,q (2.42)

The row g-vector of probabilities w,(c"),

w® = [w™ W .. w) (2.43)

is called the state distribution vector at time n. With w(® denoting the initial
state distribution vector, at time 1 we have

q
wl =3 w5,  k=1,....q (2.44)
j=1
i trix notation,
or, in matri W) — o Op 245
Similarly, we obtain
w® = wp
= wOp? (2.46)
and, iterating the process,
wim = wm-Lp
=. wlopm 247)
More generally, we have
ore ge Yy W) (Opm (2.48)

Equation (2.48) shows that the elemerits of P™ are the m-step transition proba-
bilities defined in (2.37). This proves in particular that a homogeneous Markov
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chain (£,)3%, is completely described by its initial state distribution vector w(®
and its transition probability matrix P. In fact, these are sufficient to evaluate
P{¢, =3} foreveryn > 0 and 7 = 1,2,...,q, which, in addition to the ele-
ments of P, characterize a Markov chain.
Consider now the behavior of the state distribution vector w(™ as n — oo. If
the limit
w = lim w{® (2.49)

n—o00

exists, the vector w is called the stationary distribution vector. A homogeneous
Markov chain such that w exists is called regular. It can be proved that a homo-
geneous Markov chain is regular if and only if all the ei genvalues of P with unit
magnitude are identically 1. If, in addition, 1 is a simple eigenvalue of P (i.c.,
a simple root of the characteristic polynomial of P), then the Markov chain is
said to be fully regular. For a fully regular chain, the stationary state distribution
vector is independent of the initial state distribution vector and can be evaluated
by finding the unique solution of the system of homogeneous linear equations

wP =w (2.50)

subject to the constraints
Swp =1, wi > 0, k=12,....¢q 2.51)

Also, for a fully regular chain the limiting transition probability matrix

P*® = |im P" (2.52)
n—oo
exists and has identical rows, each row being the stationary distribution vector
w:
w

w
P=| 2.53)

w

The existence of P in the form (2.53) is a sufficient, as well as necessary,
condition for a homogeneous Markov chain to be fully regular.

Example 2.4 Consider a digjtal communication system transmitting the symbols 0 and
1. Each symbol passes through several blocks. At each block there is a probability 1 —p,
P < 1/2, that the symbol at the output is equal to that at the input. Let £, denote the
symbol entering the first block and &, n > 1, the symbol at the output of the nth block
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of the system. The sequence &p,&1,&2, - ., is then a homogeneous Markov chain with
transition probability matrix
1-p p

The n-step transition probability matrix is

1+30-2p)" 3-30-29)"

o=

P* =
1-la-2p) }+30-2p"

The eigenvalues of P are 1 and 1 — 2p, so for p # 0 the chain is fully regular. Its
stationary distribution vector is w = [% %], and

1111
o _
P = 2 [ 11 ]
which shows that as 7 — co a symbol entering the system has the same probability 1/2
of being received correctly or incorrectly. O

Shift-register state sequences

An important special case of a Markov chain arises from the consideration qf a
stationary random sequence (a,) of independent random variables, each taking

on values in the set {a,ay,...,as} With probabilities py = Pla, = ax},
k=1,..., M, and of the sequence (0)3%,, With
On = (Qn-t,- - ) An-L) (2.54)

If we consider an L-stage shift register fed with the sequence (0n) (Fig. 2.7,
o, represents the content (the “state”) of the shift register at tm'le n (1..e., when
o, is present at its input). For this reason, (on) is called a shsz-regzster state
sequence. Each o, can take on M L yalues, and it can be verified 'that (on)
forms a Markov chain. To derive its transition matrix, we shall first introduce
a suitable ordering for the values of o,. This can be done in a natural way by

first ordering the elements of the set {a;,az,...,aum} (a simple way to fio this
is to stipulate that a; precedes a; if and only if ¢ < j) and then inducing the
following “lexicographical” order among the L-tuples a;,, aj, - - -, @5,
(aj, a3, - - -, a;,) precedes (@i, @iy, - - -, ai,)
jl < il) or
if and only if { 71 =%; and j2 <3, Or (2.55)

‘ jl = ila jz = i27 andj3 < i31 etc.
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n On. Q. Qnp

Figure 2.7: Generating a shift-register sequence.

Once the state set has been ordered according to the rule (2.55), each state
can be represented by an integer number expressing its position in the ordered

set. Thus, if ¢ represents the state (a;;, aiy, ..., a;,) and j represents the state
(@51, @j,, - - -, aj,) the one-step transition probability pij is given by
Dij = Plon = (aj,,8,,...,0;,) | on-1 = (a3, 4y, - - -, ai,)}
= P{C!n_l = Qjyy vy Qno = Q5 | Qn_2 = Qjy,-.., Qp_[ 1= diL}
= Pibupbiaje - 0ip_yjps . (2.56)

where d;; denotes the Kronecker symbol (6;; = 1 and d;; = 0 for i # j).

Example 2.5 Assume M =2,a; =0,a; = 1,and L = 3. The shift register has eight
states, whose lexicographically ordered set is

{(000), (001), (010, (011), (100), (101), (110), (111)}.

The transition probability matrix of the corresponding Markov chain is

(000) (001) (010) (011) (100) (101) (110) (111)

[pr 0 0 0 p 0 0 07 (000)
m 0 0 0 p 0 0 0 (001)
0 pm 0 0 0 p 0 O (010)

P= |0 p»$ 0 0 0 po 0 0 (011) 2.57)

0 0 p 0 0 0 p O (100)
0 0 p 0 0 0 p O (101)
0 0 0 p 0 0 0 p (110)

L0 0 0 p 0 0 0 p| (11)

As one can see, from state (zyz) the shift register can move only to states (wzy), with
probability py if w =0 and py if w = 1. a

Consider now the m-step transition probabilities. These are the elements of
the matrix P™. Since the shift register has L stages, its content after time n + m,
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m > L, is independent of its content at time 7. Consequently, the states on4m,
m > L, are independent of o,,; so, form > L,

L
P{Ontm = (@, 8j, - -1 85,) | On = (@iyy @iy - - -+ @iy )} = IIp. @38
=1

Thus, PL = PL+! = ..., and P” has identical rows. We can write
PL =P* (2.59)

which shows, in particular, that the shift-register state sequence defined in (2.54)
is a fully regular Markov chain.

Example 2.5 (continued) We have, by direct computation from (2.57) or using (2.58),

that P3 has the structure (2.53), with w, the stationary distribution vector, being equal
to

w = (5%, pip2, pip2, P13, P2, P13, 173, P3) (2.60)

a

2.2.2. Continuous-time processes

A continuous-time random process (or random continuous signal) is a family
of real or complex signals £(t) defined on some probability space. At any N-
tuple of times t;, t3, - . . , v, the quantities £(1), &(ta), . .., &(tn) are RVs. Con-
sequently, a random process can be described by providing the joint distribution
functions of the N RVs £(t1), £(t2), - - -, £(tw) for all integers N and N-tuples of
time instants.

A continuous-time random process is called stationary if for every N, for any
N-tuple (t1, 15, . ..,ty) and for every real 7, the N-tuples of RVs £(t1), £(t2),
. &(ty) and E(ty + 7), E(ta + 7), ..., E(tv + 7) are identically distributed.
Stated in another way, a stationary random process is one whose probabilistic
properties do not depend on the time origin. Thus, for any given T the processes
£(t) and £(t + ) are identically distributed.

The mean of the process £(t) is the deterministic signal

u(t) 2 Eg(®)] 2.61)
The autocorrelation of £(t) is the function
Re(t1,t2) = ElE(t)€"(22)] (2.62)

-
For a stationary process,
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(a) u(t) does not depend on time, and

(b) R¢(t1,t2) depends only on the difference t; — ¢;. Consequently, we can
write

Re(ty — t3) = E[€(t1)€" (t2)] (2.63)

Conditions (a) and (b) are generally not sufficient for the stationarity of £(t).
If (a) and (b) hold true, we say that £(t) is wide-sense (WS) stationary. A random
process £(t) is called cyclostationary with period T if its probabilistic properties
do not change when the time origin is shifted by a multiple of T'; that is, we
consider &(¢ + kT'), k an integer, instead of £(t). Wide-sense cyclostationarity
can also be defined as follows: £(t) is WS cyclostationary if

(@) p(t) is a periodic function of time with period T', and
(b) the autocorrelation of the process has the property
Re(t+7,t) = Re(t+ 7+ kT, t + kT) (2.64)

k any integer. Equation (2.64) can be interpreted by saying that R (t+7,t),
when considered as a function of ¢, is periodic with period T'.

Example 2.6 Consider the deterministic finite-energy signal s(t) and a WS stationary
sequence () of random variables with correlation (r5). The random signal

o0

§8)2 S aps(t—LT)

{=-~o00

is WS cyclostationary with period T'. In fact

ult) =Elar] 3 s(t - eT)

{=-o0

is periodic with period T'. Moreover,

o0 o0
Re(ti,t2) = . Y Elaweh]s(ty = €T)s" (t2 — mT)
f=—0com=—00
o0 o0
= Z Z re—ms(ty — €T)s*(t2 — mT),
f=—0o0o m=—00
and it can be verified that (2.64) holds. [m}

Some important properties of stationary and cyclostationary processes are
the following:
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(a) If a stationary (cyclostationary) process is passed Fhrou_gh a stable time-
invariant system, it retains its stationarity (cyclostationarity).

(b) The sum of two stationary processes is a stationary process. Thf: sum
of a cyclostationary process and a stationary process 1s a cyclostationary

process.

(c) Let £(t) be a WS cyclostationary process with period T, and let n(t) denote
the randomly translated process

n(t) £ &t +96), 2.65)
where 0 is a random variable statistically independent of § (t) and uni-

formly distributed in the interval (0, T'). Then the process £(t) is WS sta-
tionary.

Gaussian processes

A real random process &(t) is called Gaussian if, for any given time instgnt t, £(t)
is a Gaussian random variable. Formally, £(¢) is a Gaussian process if for any
N-tuple t1,t3,. .., tyx of time instants, N any integer > 1, the row N -v.ector of
random variables § 2 [€(t),€(t2),- .-, €(tn)] has a Gaussian distribution, that
is, a probability density function of the form

fe(x) = W exp —%(x - A (x— ) (2.66)
where p is the mean vector
2 E[g] = (Bl(t)], E[§(®)], -+ EIEEN)]) 2.67)
and A is the N x N covariance matrix
ASE[€- (€~ p)] (2.68)

Now, let £(¢) be a complex random process, and let
£(t) = Ep(t) + jéo(t) (2.69)

where £p(t), £o(t) are real processes. The process £(t) is called Gaussian if th.e
joint distribution of £p(t1), €p(t2), ---» Ep(tn)s EQ.(tl), Eq(ta)s - vs EQ(tN) is
9 N-dimensional Gaussian for any N-tuple of time instants and for any integer
N2>1 .

Gaussian processes have the following properties:
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(a) The output of any linear system whose input is a Gaussian process is still
Gaussian.

(b) Let £(t) be a WS stationary real Gaussian process. Then £(t) is stationary.

(c) Let £(t) be a WS stationary complex Gaussian process. Then £(t) is sta-
tionary if and only if the average E[£(¢,)€(t2)] is a function only of the
time difference ¢; — ¢5.

Property (c) deserves some comments. Wide-sense stationarity of £(¢) im-
plies that E[£(t)€*(s)] is a function of ¢ — s, and E[£(¢)] is a constant. For
the stationarity, one must show that E[¢p(t)€p(s)], E[6p(£)€q(s)], E[€q(t)€q(s)]
all depend only on the difference ¢ — s. But this is equivalent to showing that
E[¢(t)€*(s)] and E[£(¢)€(s)] depend only on t — s. To verify the latter prop-
erty, it is sometimes useful to apply Grettenberg’s theorem (Grettenberg, 1965).
It states that for a complex Gaussian process £(t) with mean zero we have
E[£(¢)é(s)] = 0 if and only if, for all 0 < @ < 2m, the processes £(t) and
e/%¢(t) are identically distributed; that is, £(t) is invariant under phase rotations.

2.3. Spectral analysis of deterministic and random signals

In the representation of signals in the Fourier transform domain, one associates
with each frequency f a measure of its contribution to the signal. This repre-
sentation is particularly useful when the signal is transformed by a linear time-
invariant system, because in this case each of the frequency components of the
signal is independently weighted by the system transfer function, according to
the rule (2.26) (it holds for discrete and continuous signals). In this section we
extend this concept to the spectral analysis of certain energetic quantities that one
may want to associate with a given signal, such as its energy or its power (to be
suitably defined). Specifically, assume that, for a given signal &, either discrete
or continuous, deterministic or random, we have defined a nonnegative energetic
quantity II;. The density spectrum of II; is a frequency function, say V¢(f), car-
rying information regarding how much of 1, is associated with each frequency
f. The function V,(f) is nonnegative, and the two following properties hold:

(a) The integral of V¢(f) gives IT,:
e = [ Ve(f) df. 2.70)

(b) Let II,, be the same energetic quantity defined at the output of a linear,
time-invariant system with transfer function H(f) and input £(t). Then

= [IH(DPV:(S) df @7
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In (2.70) and (2.71), I = (—o00,00) if £ is a continuous-time signal, and I =
(—1/2,1/2) if £ is a discrete-time signal. o

Let us now specialize this general definition to some cases of practical inter-
est.

Energy density spectrum: Continuous deterministic signals

Given a continuous deterministic signal z(t), we define its energy as the quantity
o0

&2 / |z(t)[? dt @.72)
-0

provided that the integral in (2.72) is finite. In the transform domai1:1, the energy
of a signal z(t) whose Fourier transform is X (f) can be expressed in the form

e= [ IX(NPdf @.73)

—00
Equality (2.73) is a special case of Parseval’s theorem. This states that for two
signals z; (t), z2(t) with Fourier transforms X, (f), X2(f), respectively, the fol-
lowing holds:

[ nomed= [~ xnxoed @74)
The function
S(f) 2 1X(H)P .75)

is the energy (density) spectrum of z(t). It is easily seen that with this definition
both (2.70) and (2.71) hold.
Power density spectrum: Continuous deterministic signals

For a continuous aperiodic deterministic signal =(t) whose energy is not finite,
define its average power as the quantity

a/2
P, 2 i 1 / |z (8)|? dt (2.76)
a0 g J—q/2
provided that this limit exists. If we define the truncated signal
' a a
——<t< -,
s 2] * 3 2 @77)
0, elsewhere

the average power of z(t) can be written

P, = lim lea (2.78)
a—+00

o b W
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where &, denotes the energy of z,(t). Hence, for the signal z(t) we define its
power (density) spectrum as the function

G.(f) 2 lim ~[X.(F)I 2.79)

a—+00

where | X, (f)|? is the energy spectrum of the truncated signal (2.77).
For a periodic signal z(t) with period T, its average power is defined as

Al (TR R
== t
P, T/_m |z(t)[? d

Define its Fourier-series expansion

where

Average power density spectrum: Discrete stationary random signals

Consider a WS stationary random sequence (&,) with autocorrelation (r,,). Its
average power is defined as

Pe £ E{J&.[°} (2.80)

The (average) power (density) spectrum G¢(f) of (&,) is the Fourier transform
of the autocorrelation sequence (r,,); that is,

(=]
; 1
Ge(f) = ) rae™™, Ifl < 2 (2.81)
n=-—o0
Let us show that with this definition (2.70) holds. We have
v Ge(f) d 3 V2 ginant g 2.82
[ip9eNd= X o [ el o=, 2.8)

and ro equals E{|¢,|*} because of (2.34) and the assumption of WS stationarity.
Property (2.71) can be proved similarly.
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Average power density spectrum: Continuous stationary random signals

Let £(t) be a WS stationary continuous random process with autocorrelation
function Re(7). lts average power is defined as

Pe 2 E{l6@)1P} (2.83)

The (average) power (density) spectrum Ge(f) of £(t) is the Fourier transform
of the autocorrelation function Re(7):

Ge(f) = / ” Re(r)e /" dr (2.84)

-0

In this situation, (2.71) takes the form
Py = [ IH()PG) df (2:85)
—00

where 7(t) is the response of a linear time-invariant system with transfer function
H(f) to the input £(2).

Example 2.7 (White noise) A process with autocorrelation function

Re(r) = %5(7) (2.86)
has a power spectrum
Ge(f) = % —0 < f<x (2.87)

Such a process is called a white noise. In practice, this process is not realizable, as its
power P is not finite. However, this process can be very useful in instances where the
actual process has an approximately constant spectral density over a frequency range
wider than the bandwidth of the system under consideration. On the other hand, the
observation of any process will be made through a measuring device whose bandwidth
is finite: consequently, when we observe a constant spectral density it is mathematically
convenient to assume that the underlying process (which we do not, and cannot, observe)
is a white noise.
At the output of a linear time-invariant system with transfer function H(f) we get
the average power -
Po=— | HOP (2.88)
2 Jowo
which is finite provided that the integral in the RHS converges. In this situation, it is
customary to define the equivalent noise bandwidth of the system as

oo oy

=z 2.89
2 mex (KT @89

Beq
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(a)

fo

— Beql'_ - Beql‘_

Figure 2.8: Equivalent noise bandwidth for (a) low-pass systems, and (b) bandpass
systems.

Notice the presence of the factor 1/2 in (2.89), which can be interpreted by saying
that the bandwidth is only defined for positive frequencies. This convention is assumed
throughout this book for every possible definition of the bandwidth of a signal or a
system. For linear systems with a real impulse response, |H(f)] is an even function.
Hence, the factor 1/2 can be omitted in the RHS of (2.89) and the integration carried out
from 0 to oo. With definition (2.89), the power at the output of a linear, time-invariant
system with equivalent noise bandwidth Beq and whose input is a white noise with power
spectral density Np/2 turns out to be

Py = No - Beq - max |H(f)? (2.90)

Equation (2.90) shows that B,y can be interpreted as the bandwidth of a system with a
rectangular transfer function, whose amplitude squared is max |H(f )|2. Fig. 2.8 illus-
trates this fact for a low-pass and a bandpass system.
For example, the low-pass Butterworth filters defined in Example 2.3 have an equiv-
alent noise bandwidth
m/(2n)

sinfr /(2] @0

Beq = fz:
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From (2.91) it is easily seen that, as n — o0, Beq = fo, fe being the cutoff frequency
of the filter. ]

Average power density spectrum: Continuous nonstationary random signals

Consider now a nonstationary continuous random process (t). Clearly, defini-
tion (2.83) is not valid anymore because in general E{|¢(t)[?} varies with time.
In this situation, the definition of average power that should be used is

a/2
Pe= ,}i{gg% [ B}t (2.92)
that is, the time average of the mean value of the instantaneous power |£(t)]2.
With this definition, a spectral density function that satisfies properties (2.70)
and (2.71) can also be defined for nonstationary processes, provided that we
restrict our attention to an appropriate subclass of processes. This subclass is
that of harmonizable processes (Loéve, 1963, pp. 474-477). Roughly speaking,
a process is harmonizable if we can define its Fourier transform:

202 [ eerar 293)

Equation (2.93) defines a new random process in the variable f. In certain cases,
a proper interpretation of (2.93) requires some care. In fact, (2.93) is an equality
in the sense of distribution theory (i.e., it becomes an equality if a linear operator
is applied to both sides and the order of integrations is reversed in the RHS).
Incidentally, this is the correct way to interpret equalities like

8(t) = / = et g
-0

Harmonizable processes are a first-step generalization of WS stationary random
processes. It has been shown (Cambanis and Liu, 1970) that, under some mild
conditions, any random process obtained at the output of a linear system is har-
monizable. The system may be randomly time variant and the input process need
not be stationary, or even harmonizable.

For a harmonizable process £(t), the power spectrum can be obtained as fol-
lows. Compute first the function

Te(f1, f2) 2 EE(A)Z(£)] (2.94)

Consider then the bisector f; = f, of the plane (fi, f2) and the line masses of
L¢(A, f2) located on it. The distribution of these line masses provides us with

2.3.  Spectral analysis of deterministic and random signals 35

a function G¢(f), the power spectrum of £(t). Specifically, if I'¢(fi, f2) can be
written in the form

Le(fr, f2) = Ge(A)0(f1 — f2) + Ae(f1, f2) (2.95)

where A¢(f1, f2) has no line masses located on the bisector fi = f, then
Ge(f) is the required spectrum. (It may happen that G¢(f) is identically zero;
in this case the process has finite energy.] Using (2.93), it can easily be seen that
Le(f1, f2) can be written in a form equivalent to (2.94):

00 o0 .
Te(fi, f2) = / / Re(r, m)e ™ hn=bm) gr g (2.96)
—o0 J—00
Equation (2.96) shows that I'c(f1, f2) is the two-dimensional Fourier transform

of the autocorrelation function of the process £(¢). This is tantamount to saying
that R¢(71, 72) is the inverse Fourier transform of T¢( fi, f»):

Re(rym) = [ [~ Telf e ntmasdp,  97)

Example 2.8 Let £(¢) be WS stationary. Its autocorrelation function depends only on
71 — T2. Thus, (2.96) yields

© oo .
Fé(fl: f2) = / / Re(r1 — Tz)e—ﬂ"[fl(ﬂ—72)+(f1-f2)72] dr drg
-0 J~00

/ ” Re(r)e (" dr . §(f1 — fa), (2.98)

which is consistent with (2.84) (as it should be). Also notice that, using (2.97), one sees
that R¢ (71, 72) depends on the difference ;1 — 72 only if T'¢(f1, f2) has the form

Le(f1, f2) = Ge(1)8(f1 — f2) (2.99)
(see Fig. 2.9). ]

Example 2.9 Let£(t) be a WS cyclostationary process with period 7. Using the prop-
erty (2.64), it is seen that R¢ (71, 72) can be expanded in the Fourier series

o0

Re(t+7,t)= > ga(r)efm?t/T (2.100)
n=—o0
where
al (72 —jn2mt/T
gn(T) = )z Re(t + 7, t)e=m27t/T gy (2.101)
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A GUR)

Figure 2.9: The function T¢(f1, f2) for a wide-sense stationary process.

Using (2.96), we get

© oo ) ot
Pf(fl’fz) ‘/;oo ‘/;oogn(T)eanﬂ/Te jen{(fi- 2+l g de

n.

>
5 Gutni (- 7) @109

It

where Gp(+) is the Fourier transform of gn(+), —00 < n < 0. Equation (2.102)
shows that T'¢(f1, f2) consists of line masses located on the lines fi = f? + .n/il",
—o0 < n < 0o, which are parallel to the bisector of the plane ( f1, f2)- This situation 1s
shown qualitatively in Fig. 2.10.

The power spectrum of £(t) is then

Ge(f) = Golf) (2.103)

It can also be shown that the power spectrum (2.103) can be obtained by considering the
WS stationary process (2.65) and using (2.84). [}

2.3.1." Spectral analysis of random digital signals

In Chapter 4, devoted to the transmission of digital information using continuous
signals, the following random process will be considered:

, )= 3 slt—nTsan o) (2.104)

n=—00
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I (f1,./2)

Figure 2.10: The function T'¢( f1, f2) for a wide-sense cyclostationary process.

This is called a digitally modulated random signal, or for short a digital signal.
The sequence (a,,) of discrete RVs is WS stationary, and will be referred to as
the sequence of source symbols. The sequence (o,) is a stationary sequence of
discrete random variables referred to as the states of the modulator. The random
waveforms s(t; an, o) take values in a set {s;(t)}?; of deterministic, finite-
energy signals. They are output sequentially by the modulator, one every T
seconds, in accordance with the values of the source symbols and the modulator
states.

Several special cases of (2.104) are of interest. If the modulator states gy, do
not appear in (2.104), the modulator is called memoryless, and we have

00

£t)= 3 s(t—nT;an) (2.105)
If in addition
s(t; an) = aq s(2), (2.106)

that is, the waveforms of the set {s;(t)}}; are scalar multiples of one and the

same signal s(t), the modulator is called linear, and we have
o0
)= Y ans(t—nT). (2.107)

n=—o0

Here we evaluate the power density spectrum of the signal (2.104), which is
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generally nonstationary. The Fourier transform of £(t) is given by

(=]
= 3 S(f; an,on)e” T (2.108)
n=-—0oo
where S(f; @, 0,), the Fourier transform of s(t; an, on), takes values in the
set {S;(f)}4,, with Si(f) & Flsi(t)],i = 1,2,..., M. Thus, from (2.94) we
get

Telffo) = 50 52 E{S(fii s 0m)S"(fa; Qm, o) Je ™27 Am=Sa0T

M=—-00 N=—00

oo oo X
= Z Z E{S(fly an+t70'n+l)st(f2; amUn)}e—ﬂ”hne_]zw(h—h)nT

{=—o0n=—-00

As the sequences (a,), (0,) are stationary, the expectation in the last line
of the previous equation depends only on £ and not on n. Thus, recalling the
equality (see, e.g., Jones, 1966, p. 135)

= ~jemmwz __ 1 - m
mg_:me = ;w‘s (Z - ;) (2.109)
we obtain
1 & ]
Le(ffa) = 7 > E{S(f1; Cntt, 0nte) " (f2; @, 0n) e 21T
= m
m=z_:o<,6 (fl ~fa— T) (2.110)

Compare now (2.110) with (2.95). It is apparent that the power spectrum of § )
is given by

Ge(f) = 1 i Gy(f)e 2T (2.111)
t=—oo
where
Gulf) & E{S(f; anse, 0nse)S"(f; am, 0n)} @2.112)

It is customary, in the computation of spectral densities, to separate their con-
tinuous part from their discrete part (line spectrum). This can be done in our
situation by defining

Go(f)

lim Ge(f)
|E{S(f; an, ou)} (2.113)

\
]

Y
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(this does not depend on n because of stationarity) and rewriting (2.111) in the
form

Goolf)le™ 72T

6:(f) =% 5 (6el1) -

{=—c0

+77 Goo(f Z 6(f——) (2.114)

{=—o00

where (2.109) was used again. The second term in the RHS of (2.114) is a line
spectrum with lines spaced 1/T Hz apart. The first term is line-free if G¢(f) —
Goo(f) tends to zero fast enough as £ — oo for all f. We shall assume in the
following that this is the case.

Equation (2.114) can be rewritten in a slightly different form by observing
that, from definition (2.112), it follows that

G_i(f) = Gi(f) (2.115)

Thus, denoting by gé”’ (f) and géd)( f) the continuous and the discrete part of the
power spectrum, respectively, we finally get

Ge(£) =60 (f) + 60 (f) (2.116)
where
60 (1) = 7 {Z[Gt(f w(f)1e~f2”f”} - 2{Go() = GulN)] @117
and
9(f) = —5Golf) :Z é (f - —) (2.118)

We shall now proceed to specialize (2.116)-(2.118) to a number of cases of prac-
tical interest.
Linearly modulated digital signals

When the modulator is linear, that is, (2.104) reduces to (2.116)—(2.118), from
(2.112) we get, with S(f) denoting the Fourier transform of s(t),

Gi(f) = E{ansea }|S(F)I? (2.119)

If
E{an} =4 (2.120)

1%
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and
E{aea},} = 02pem + |ul? (2.121)
with pg = 1 and p4, = 0, then the power spectrum of £(t) is given by
Ge(f) = GO (F) +6(f) @.122)
where
(e) ‘7121 2 > —jonfeT
G (f) = RIS(NIF 1 2R pee™ 7 1 (2.123)
£=0
and )
ad 14
a2 =snp 3 s(f- % 2.124)
T = T

It is seen from (2.124) that ;. = O is a sufficient condition for G¢(f) to have no
lines in its spectrum.

When the random variables o, are uncorrelated (i.e., p, = dp¢), We get
from (2.123)

2
g(f) = EIS()P @.125)

Notice from (2.123) the two factors that separately influence the shape of g§°’ (-
The first is the waveform s(t) through its energy spectrum. The second is the cor-
relation of the sequence (c,), which appears in the bracketed factor of (2.123).
If this factor is rewritten as

o0 =]
2§R2ple—j21rﬂT —-1= Z ple—jh’ﬂT

=0 f=—00
it is seen that it turns out to be the Fourier transform of the sequence (p,). In
practice, the fact that G(f) depends on two independent factors provides a de-
gree of freedom that can be used to shape the signal spectrum. Indeed, a given
spectrum can be obtained by choosing appropriately the waveform s(t), or the
correlation of (c,), or both.

Example 2.10  Perhaps the simplest way to introduce correlation in a discrete sequence
is to pass it through a linear system. Thus, let (5,) denote a sequence of iid RVs with
EB, = 0 and E|3,|? = 1, and let () denote a new sequence with

n = hmBa-m, (2.126)
m

where (h,,) is the impulse response of a linear, time-invariant system. In this situation a
simple computation shows that

E{antean} = Y hmiehy, (2.127)
m
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Thus, the power spectrum of (2.107), when (a,) is as in (2.126), is

Ge(f) = ZISUPIHUTIP, 128

where H(f) is the transfer function of the discrete linear system:

H(f) &S hpe i/ (2.129)

It is immediately apparent from (2.128) that the same power spectrum for £(¢) could be
obtained by using, instead of (c,), the sequence (8.} and a signal whose Fourier trans-
formis S(f)H(fT). |

Nonlinearly modulated digital signals

We shall now consider the computation of the power spectrum of the digital
signal £(t) expressed by (2.104) when the sequence (o,) is assumed to have a
special structure. In particular, we assume that () is an iid sequence, and that
(0,) depends on (a,) as follows:

Ons1 = g(n, 0n), (2.130)

where g( - ) is a completely known deterministic function. Equation (2.130) de-
scribes in which state the encoder is forced to move at time n + 1, when at time
n it was in state o, and the source symbol is &,. The modulator uses the value
of the pair a,, 0, to choose the waveform s(t; a,, 0,) from the set {s;(t)}}2,,
which is then output sequentially.

For this model of a digital signal to be fully specified, it is sufficient to pro-
vide the function g( - ) and the mapping between pairs &, 0, and waveforms of
the set {s;(t)}},. We assume, hereafter, that o,, takes on the g values ¥y, L,
...» &g, and ar, takes on the L values a;, ay, ..., ar (g and L both finite). Thus,
our description of £(t) can be done through two L x g tables whose rows are
labeled a4, as, - . ., ar and whose columns are labeled &;, T, ..., Z4. In the first
table we display the waveforms corresponding to the pairs (a;, £;), and in the
second the values of g(a;, ;). An equivalent representation is in the form of a
state diagram. This is a directed graph consisting of ¢ vertexes, each represent-
ing one state; an oriented branch is drawn from state ¥; to state ¥; if and only if
there is a source symbol ay such that g(a, T;) = Z;. The branch is then labeled
by ax and by the waveform, say s,(t), corresponding to the pair (ay, X;) (see
Fig. 2.11). Before proceeding further, we provide some examples of nonlinearly
modulated digital signals and their representations.
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. a,ls; (1) .

Figure 2.11: Element of the state-diagram representation of a modulated digital signal.

NIRRT

ol o 0 ol =, 5.

1] s =0 1| = s,
1s(2)

0/0 -@ a 0/0
1=s(2)

Figure 2.12: Representation of the bipolar-encoded digital signal: Tabular form and
state diagram.

Example 2.11 (“Bipolar-encoded” digital signal) The modulator has ¢ = 2 states,
say £ and 5_, and the source is binary; that is, a € {0,1}. The modulator responds
to a source symbol 0 with a zero waveform and to a source symbol 1 with the waveform
s(t) or —s(t), according to whether its state is £ or X, respectively. Source symbol 1
makes the modulator change its state. The tabular and state-diagram representations of
this signal are provided in Fig. 2.12. O

Example 2.12 (“Miller-encoded” digital signal) The modulator has M = 4 wave-
forms, ¢ == 4 states, and the source is binary. Figure (2.13) describes this digital signal.
a
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On

ol Ty Ty Z Za e Z Z Z X

0| s4() 540 510) s1(0) 0 i Zy I, I
1 2@ 53500 200 530 1 T, X3 X, I

Iil(t) Hz ® TSs ® 184 ®
LEREASE

Figure 2.13: Representation of the Miller-encoded digital xtgnal Tabular form, wave-
forms, and state diagram.

Example 2.13 (“TCM” digital signal) The modulator has M = 8, ¢ = 4, and the
source is quaternary. The available signals are

s,-(t)=exp{j[21rf0t+(i-1)§]}, i=1,...,8, 0<t<T, foT'>»1

Fig. 2.14 describes the resulting digital signal. m]

For our future computations, the following quantities must be defined:

(a) The state transition matrices Ei, k = 1,2..., L, which are the g x ¢
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an

0 | si(® 50 5300 s40) si(t)=exr){j[2ﬂfot+(i-1)’ﬂ}'
1| s50) s6(t) s1() sg(®)

2 | 500 s 510 0 0<:<T

3] s1(0) ss® ss(®) se(®) foT>>1

o T E I I

w NN = O
™
[ ]
™M
S
™
[ ]
™
»

2s, (1)

0/s, ()
356 (£)

1/s5 (£)

2/s54(0)

2055 (1) 355 (1)

3/57 (t)

Figure 2.14: Representation of the TCM digital signal: (a) Tabular form; (b) state dia-
gram.

matrices whose entry [Ey|;; is equal to 1 if g(ax, Z;) = I;, and zero oth-
erwise. In clarification, the matrix Ej has a 1 in row ¢ and column j if the
source symbol a; forces a transition of the modulator from state Z; to state
Z;. Otherwise, it has a zero.

(b) The row g-vectors sx(f), k = 1,2,..., L, whose q entries are the Fourier
transforms of the waveforms of the set {s;(t)}/Z,, according to the rule
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[se(f)l: = Fls(t; ax, £)]. That is, s (f) includes the amplitude spectra
of the modulator waveforms corresponding to the source symbol a;, for the

different modulator states.

Example 2.11 (continued) In this case, letting a; = 0 and a3 = 1, we have
{10 01

si(f)=[00],  so(f)=5(H)l1 -1

where S(f) is the Fourier transform of s(z). O

and

Example 2.12 (continued) In this case, letting a; = 0, a3 = 1, we have

0001 0100
0001 0010
E; = -
Tliooolr E=lg100
1000 0010
and
silf)=S(f)[-1-2 -1-2z 1+z 14 2]
52(f)=5(f)[1—2 —142 1-~2 —1+z]
where
& T sinmfT/2
S = — —
(/) 2 wfT/2
and
-

Example 2.13 (continued) In this case, letting a; =1~ 1,7 = 1,2, 3,4, we have

1000 0100
0010 0001
E)=E; = =Ey =
1=E2=14 999 Es=Es=|, 1 ¢ 0
0010 0001

and
il
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46
a(f) = S(Hw* w° w® W)
() =S(N? v w w!]
54(f) _ S(f) [ws 7 w4 w5]
where A M w é ej1r/4

SHO=T=F-T

We want now to evaluate the power spectrum of the digital.sign.al (2.104).
The assumption that () is an iid sequence, along. with (2.130), 1mp11es. t.hat ;he
state sequence (o) is 2 homogeneous Markov chain. In fact, the probability that
the encoder is in a given state at time n + 1 depends only on the state o, an.d.on
the symbol ¢, and not on the preceding states on—1, Tn-2, -+ - The transition
matrix of this chain has entries

[Ply & P{oan=T;|0n=Ts
= P{g(an, 0n) = Z; | o0 = L}

L
= Z P{g(am O'n) = E]' l Qp = G, On = Ei}P{a" = ak}
k=1

L
= S nlEdy @131)
k=1

where, as already defined,
& Plon=a), k=12,...,L (2.132)
Thus, the transition matrix P is a linear combination of the matrices E;:
L
P=> nEx (2.133)
k=1

We assume that the Markov chain is fully regular, and that its staﬂiqg time is
n = —oo. This implies that, for any finite n, w(® = w. Thus, the transition mat
trix P provides a complete characterization of the sequence of modulator states;
in particular, the stationary state probabilities

- & P{O’n — Ei} (2.134)

are obtained as the entries of vector w computed from (2.50) and (2.51).
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Let us now define four quantities that play an important role in the expression
of the power spectral density we are seeking. The first is the average value, taken
over the source symbols, of the vectors s (f):

L
ca(f) = 3 pise(f) (2.135)
i=1
The ith component of c;(f) is then the average amplitude spectrum of the wave-
forms available to the modulator when it is in state PR
The second is the g-vector c; (f) whose jth component is the average ampli-
tude spectrum of the waveforms that, when output by the modulator, force it to
state X;.
This jth component of ¢, (f) is then given by

L ¢
A
(A = 323 pewilBily; Fls(t; ar, 54)] (2.136)
k=1i=1
(recall from the definition of E, that [Ex];; = 1 only if the source symbol a;
takes the modulator from state ; to state Z;). If we define the ¢ x ¢ diagonal
matrix

D £ diag (wy, ws, ..., w,) (2.137)
we have from (2.136)
L
ci(f) = Y pese(f)DE; (2.138)
k=1

Our third quantity is the average amplitude spectrum of the waveforms available
from the modulator:

>

u(f) E{F[s(t; an, on)]}

L

= Zipkw,}'[s(t, D Ei)]

k=1i=1
L
= ) pewsi(f)
k=1
= wei(f) (2.139)

Finally, the fourth quantity of interest is the average energy spectrum of the
waveforms available from the modulator:

55 el Fls(t ax, )1

k=1i=1

L
> pesi(f)Dsi(f) (2.140)
k=1

Co(f)
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Before proceeding further, we evaluate these four quantities in a few exam-
ples.

Example 2.11 (continued) Assuming that the source symbols 0 and 1 are equally

likely, we have
1j1 1
P - Poo T2 [ ]

2(1 1
so that B L1
w=l3 3

Moreover,

ef) = S(Ag 4

a(f) = SN~ i

pu(f) = 0
and

Example 2.13 (continued) Assuming that the source symbols 0 and 1 are equaily
likely, we have

-

POO

[l i = =1
O = O =
—_0 - O
OO = -
— =
— =
—— =
——

eo(f) = S(Hl-z -114],

a(f) = %[14—2 l—z =142z —1-2],
p(f) =0

alf) = 2SN
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Example 2.13 (continued) Assuming that the source symbols O, 1, 2, 3, are equally
likely, we have

1100 1111
_ljoo0o11 o _pz_ 1|1 111
P_21100 P‘P‘41111

0011 1111

Moreover,
co(f) = 0
alf) =
and

Consider now the computation of the power spectrum. This will be under-
taken by applying (2.116)—(2.118). From (2.112) we have, for £ > 0,

9 a

Ge(f) = 3333 5(f; an, £5)S*(f; ax, Ti)

h=1k=11i=1 j=1
'P{an+l = Qp, O = Qg, Onyt = Ej, Opn = E,,} (2141)

The probabilities appearing in (2.141) can be put in the form

P{an+l = Qp, Qp = Gk, Op4e = Ej, Op = 21}
= P{an+l =Qp, Onyt = Ej I Qp = Qg, On = E;} s PrWy (2142)

As the source symbols are independent, we have

Planie = an, Onse = Z; | an = ag, 00 = &;}
=pp P{Onpe = i | an = ag,0n = i}

q
=Dn ZP{Un+l=Ej|Un+1=Emy Qp = Gk, Un=21;}

m=1
P{0ns1 = Tn | an = a4, 0 = Ti}

q
=Pr Z P{onre=Z;j | ont1 = En} [Bilim

m=1

q
=pn 3 [P mj [Eilim (2.143)

m=1

e
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For £ = 0, we get instead
L ¢ 2 w“
Go(f) =3 2 IS(f; o, Ti)* prwi. (2.144)

k=1 i=1

By combining together equations (2.141) to (2.144), we have

ZL: ZL:PthSZ(f)DEkPl-ISQ(f), £>0

Gy(f) = § hpre=t (2.145)
2 oasi(f)Dsy(f), £=0
h=1
and, using definitions (2.135) to (2.140),
HHPEEL(f), £>0
Ge(f) ={ ‘C’;((Jf; alf), £>9 2.146)
Also, from (2.113) and the definition (2.139) of u(f), we get
Goolf) = |u(f)P? (2.147)

or, equivalently, if (2.146) is used,
Goo(f) = ci(f)P=cy(f) (2.148)

In conclusion, the continuous and discrete parts of the power spectrum of our
digital signal are given by

GO() = gloolh) - ()P + ZRGEDADSGN] @149
and
1 , & ¢
G9(1) = 2elul)F 3 5 (- 7) @150
where -
A(f) & Y [Pt — P /T 2.151)
=1

Whenever there exists a finite N such that PY¥ = P> [e.g., when (0,) is' a
shift-register state sequence], A(f) involves a finite number of terms, ang its
computation is straightforward. If such an N does not exist, we need a technique
to evaluate the RHS of (2.151).
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Observe that, from the equality PP = P> we have

Pf—P® = (I-P%)(P*-P%)
= (I-P%)(P - P>) (2.152)

for all £ > 0. Thus

A(f) = e‘J'z"'fTZ(PZ _ Por:))e—j21rf£T

=0
oQ
= e‘jZ‘lrflT(I _ POO) Z(Pk _ Poo)le—j27rf£T
=0
= (I-P%)[e*/T] - (P* ~ P™)|~! (2.153)

where the last equality holds because the matrix (P*—P) has all its eigenvalues
with magnitude less than 1 (see Cariolaro and Tronca, 1974, for a proof).

It is seen from (2.153) that the matrix A(f), necessary to evaluate the RHS
of (2.149), can be computed for each value of f by inverting a ¢ x ¢ matrix. This
procedure is computationally inefficient because, if the spectrum value is needed
for several f, many matrix inversions must be performed. For a more efficient
technique, observe that A(f) is an analytic function of the matrix

ASpP-p> (2.154)

so that A(f) can be written in the form of a polynomial in A whose coefficients
depend on f, say,

K-1
A(f) =I=P®) 3" Bi(f)A (2.155)
i=0
The expansion (2.155) is not unique, unless we restrict X to take on its minimum
possible value (i.e., the degree of the minimal polynomial of A). Here we assume
that the reader is familiar with the basic results of matrix calculus, as summarized
in Appendix B. In this situation, equating the RHS of (2.153) and (2.155), we
get
K-1
[*TI- Al S Bi(f)Ai-TI=0 (2.156)
i=0
As the LHS of (2.156) is a polynomial in A having degree K, its coefficients
must be proportional to those of the minimal polynomial of A. Denoting this
minimal polynomial by

K
AN =3 6N, k=1 @.157)
=0
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and equating the coefficients of A;, ¢ =0,..., K, in (2.156) and in the identity

K
S 5AT=0 (2.158)
i=0
we get the coefficients §i(f), i = 0,..., K - 1, needed to compute A(f) ac-
cording to (2.155). This procedure allows one to express A(f) as aclosed-form
function of f, which can be computed for each value of f with modest compu-
tational effort.

Although the use of the minimal polynomial of A to obtain the representa-
tion (2.155) leads to the most economical way to compute the spectrum, every
polynomial A()) such that (2.158) holds can be used instead of the minimal
polynomial. In particular, the use of the characteristic polynomial of A (which
has degree g) leads to a relatively simple computational algorithm (due to Fad-
deev and first applied to this problem by Cariolaro and Tronca, 1974). According
to this technique, A(f) can be given the form

1
where A()) is now the characteristic polynomial of A, and B( - ) is a ¢ x ¢ matrix
polynomial:

A(f) = I-P%) B(e/2™T) (2.159)

B()\) = M'Bg + A7 By + -+ By (2.160)
The polynomials B(-) and A(-) can be computed simultaneously by using the
following recursive algorithm (Gantmacher, 1959). Starting with §; = 1 and
Bg=1let

Qr = ABia
1
Og-k = —'Etr Qx
By = Qg+ Jq_kl (2.161)

fork =1,2,...,q. At the final step, B, must be equal to the null matrix, and
6o = 0, because the matrix A has a zero eigenvalue.

Example 2.11 (continued) In this case P = P; thus, from (2.151) we have

R i
2 p—

so that 1
Ge(f) = Ge(f) = ﬁlS(f)lz(l —cos2nfT)
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Example 2.12 (continued) We have

-1 1 -1 1
Alp_pe_l|-1 -1 1 1
1 1 -1 -1
1 -1 1 -1

Application of the Faddeev algorithm gives

fg=083=1, 62:%’ S1=8=0

13;—1 1001
By==>]|" B,oLil01 10
4 1 -1 =Zlo 110
1 -1 1 1001
and
B;=0

Thus, using (2.149) and (2.159), we get

Ge(f) = 98
T (sin7rfT/2>2 3+cosmfT+2 cos27rfT;cos37rfT

= 2\TxfT2 9+ 12 cos2n/T + doosdnfT 2162

]
Example 2.13 (continued) From (2.149) we get
. 1

Ge(f) = G7(f) = ZIS(AP (2.163)

]

A special case

We finally observe an important special case of the digital signal considered. If
the modulator has only one state, or, equivalently, the waveform emitted at time
nT depends, in a one-to-one way, only on the source symbol at the same instant

we have, from (2.149) and (2.150) and after some computations, ,

9 =7

M
;Pi|5i(f)|2 -

;pisi(f)

2
] (2.164)

UL
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and

2 & ¢
1 _t (2.165)
GO(f) = 75 )y ‘5(f T)

{==00

f Pisi(f)

Wi { M wavi vai the
i i=
modulator.

2.4. Narrowband signals and bandpass systems

i ain symme-
When the signal z(t) is real, its Fourier 'transform X( lf ) :Eoczs }gcz;t) " a),,, e
tries around the zero frequency. In particular, the real p MR
fﬂnction of f, and its imaginary part is odd. A§ a consequeinc:,r L o
sition to reco;lstruct z(t), it is sufficient to sp.emf).' X( f ) c:n ); tec:n Wh_ose. ow
hat z(t) is passed through a linear, time-invanant sy whose trans-
for fancrion the step function au(f), @ a constant. At the output of this y1 "
e 21;15‘:;3: altssignal fpr)om which z(t) can be recovered without information loss.
we :
The impulse response of this system is

% [6(t) + Jw—li]

so its response to z(t) is a/2 - [z(t) + 7Z(t)], where

s 2l 29 (2.166)

w0l 2
. . it

is called the Hilbert transform of z(t). Notice that, because c;f trl;ea csi;nrg);l;z:e)f

in the integrand, the meaning of the RHS of (2.166? h.aS ;o 1(:,1 mads procse

Specifically, the integral is defined as the Cauchy principal value.

a = 2 yields

2(t) = R3] (2167)

3(t) £ z(t) + 52(2) (2.168)

i the
Equation (2.167) shows that the original 51gn(al )It(,t) can tlye :':;ic;vge?::i 1::111; i
. i ion 2u(f) by simply .
f a system with transfer function u(f . . !
:‘l;l?g;r?lpfex);ignal &(¢) is called the analytic signal associated with z(t)
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—— Spectrum of z(z)
Spectrum of y(r)

~

E | : ;
5 hH A fi Lo h O f
Figure 2.15: Spectra of a baseband signal 2(t) and of a narrowband signal y(t).

Example 2.14 Let z(t) = o8 (2 fot + ). Its Hilbert transform is Z(¢)
¢), so the corresponding analytic signal turn

see from this simple example that the analy
of the familjar complex representation of sj

= 8in(2x fot +
s outto be £(¢) = exp{;(2n fot + @)} We
tic signal representation is a generalization
nusoidal signals. a

Among the properties of analytic signals, two are worth mentioning here.

(a) The operation transforming the real signal z(t) into the analytic signal

£(t) is linear and time invariant, In particular, if z(t) is a Gaussian random
process, Z(t) is a Gaussian random process.

(b) Consider two real signals 2(t) and y(¢), and their product

() £ 2(t)y(t) (2.169)

Assume that z(¢) is a baseband signal, that is, its
power) spectrum is zero for [fl > frandy(t) isa narrowband signal, that
is, its spectrum is nonzero only for fo < |f| < f3, fo > f1 (see Fig. 2.15),
With these assumptions, from our definition of an analytic signal it follows
that

(amplitude or enérgy or

() = 2(t)3(2)

that is, £(¢) is the product of the real
associated with y(z).

(2.170)
signal z(¢) and the analytic signal

e

L
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f
Ny
R
=
oy
Y

At | Ah S
(b)

Figure 2.16: (a) Spectrum of a narrowband signal; (b) spectrum of its complex envelope.

(Figures not to scale.)

Example 2.15 (Amplitude modulation of a sinusoidal ca.rrier) Lety(t) = cos 2;: ,{23’
and let z(t) be a deterministic baseband signal whose Fquner. transfcrrm Z ( f) 1:):1:0::1t "
to the interval (—f1, fi), f1 < fo- The analytic signal associated with their produ

3(t) = z(t)eﬂrfot 2.171)

which shows that the amplitude spectrum of Z(t) is Z(f — fo), that s, it is obtained bé
translating the amplitude spectrum of z(t) around the frequency fo-

2.4.1. Narrowband signals: Complex envelopes

A narrowband signal is one whose spectrum is to'a certain extent cogcegtf?tic;
around a nonzero frequency. We define a real signal to be narrO\;/ an fx p
(amplitude or energy or power) spectrum is zero fpr‘| fl¢ (f.l, f2), \6N er;e (oln, / ;e
is a finite frequency interval not including the origin (see Fig. 2.1 («':.l) . e
other hand, a signal whose spectrum is concentrated arpund the orl';glrz1 o e
frequency axis is referred to as a baseband signal. For a given narrowband sig
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and a frequency fy € (fy, f2), the analytic signal £(t) can be written, according
to the result of Example 2.15, in the form
E(t) = z(t)eI? ot (2.172)
where Z(t) is a (generally complex) signal whose spectrum is zero for f>f—f
and f < fi — fo (see Fig. 2.16 (b)).
The signal £(t) is called the complex envelope associated with the real signal
z(t). From (2.172) we have the following representation for a narrowband z(t):

() = R[(t)]
= z.(t) cos 2 fot — z,(t) sin 2 fot (2.173)
where
z(t) £ RE()] = Rl (t)e 20
= z(t) cos 2 fot + Z(t) sin 2r fyt (2.174)
and
Z,(t) = S[E(t)] = S[3(t)e72ot]

~z(t) sin 27 fot + Z(t) cos 2 fot (2.175)

are baseband signals. Equation (2.173) and direct computation prove that z(z)
and z,(t) can be obtained from z(z) by using the circuitry shown in Fig. 2.17.
There the filters are ideal low-pass.

From (2.172) it is also possible to derive a vector representation of the nar-
rowband signal z(t). To do this we define, at any time instant ¢, a two-dimensional
vector whose components are the in-phase and quadrature components of (z),
that is, z.(t) and z,(¢) (see Fig. 2.18). The magnitude of this vector is

A=(t) £ 12(t)] = \/52(t) + 22(t) (2.176)
(see Fig. 2.19), and its phase is
t
0(t) £ arg [#(t)] = tan- Z20) 2.177)
z.(t)
The time functions A:(t) and ¢, (t) + 27 fot are called, respectively, the in-
Stantaneous envelope and the instantaneous phase of z(t). The instantaneous

frequency of z(t) is defined as 1/2 times the derivative of the instantaneous
phase; that is,

a Lz, (t)z.(t) — ,(t)z.(t)

t) = — =L < 2.178

fx() f0+2ﬂ_ zg(t)+z§(t) ( 7 )

where the primes denote time derivatives. From (2.173) to (2.177) the following
representation of the narrowband signal z(¢) can also be derived:

z(t) = Az (t) cos[2r fot + o, (2)] (2.179)

o
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_>(?—> 1k
&» cos 27yt
~—>(%Q i —>—-%x,(t)

sin 27fy ¢

Figure 2.17: Obtaining the real and imaginary parts of the complex envelope of the
narrowband signal z(t).

L

QUADRATURE

. (1)

Rl

~~

o)
1

-

x. () IN-PHASE

Figure 2.18: Vector representation of the narrowband signal x(t).

Narrowband random processes

Consider now a real narrowband, WS stationary random process v(t), and the
complex process

D(t) £ v(t) + 5D(2). (2.180)
The possible representations of »(t) are
u(t) = R[p(t)e* o] (2.181)

v v(t) = v(t) cos 2 fot — v4(t) sin 2 fot (2.182)
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x2(2)

= Oy

X0, 2cos 27fy ¢ n ‘/_ A ()

X0 x2()

§.

—2sin 27fy ¢t

Figure 2.19: Obtaining the instantaneous envelope of the narrowband signal z(t).

and
v(t) = Au(t) cos[2m fot + @, (2)] (2.183)

where
17(t) 1;(t)e—j27rfot

ve(t) + jus(t) (2.184)

is the complex envelope of v(t).

The power spectrum of £(t) can be easily evaluated by observing that 5(t)
can be thought of as the output of a linear, time-invariant system with transfer
function 2u( f) whose input is v(t). Thus, its power spectrum equals the power
spectrum of v(t) times the squared magnitude of the transfer function:

Go(f) = 46, (f)u*(f) = 46, (f)u(f) (2.185)

Equation (2.185) shows that the spectral density of (t) is equal to four times
the one-sided spectral density of v(t). Consider then the complex envelope (t).
From (2.184), its autocorrelation is

Ry(r) = E[o(t+ 7)o" (t)]e 2" for
= R; (T)e_jzﬂ'for 2.186)
and hence

which shows that the power spectral density of the complex envelope (t) is the
version of G;(f) translated around the origin (see Fig. 2.20). Consider finally

o
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60
©,(f) £20] < No
— Nyl2 —1
o @) fo f
85(f) E[|5 ()1 = 2NoB
2N,
(b) fo f
A %;(f)
pa E[[v()?] = 2N, B
(c)

4,0 =%,(f)

Elv2()] = Ep2(0] = NoB
Ny

Figure 2.20: Representations of a narrowband white noise process v(t): (a) Power
spectrum of v(t); (b) power spectrum of the analytic signal o(t); (c) power spect-rum of
the complex envelope i(t); (d) power spectra of the real and imaginary parts of U(t)-
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ve(t) and v,(t), the real and imaginary parts of the complex envelope. It can be
shown (see Problem 2.20) that the following equalities hold:

R, (1) =R, (7) (2.188)
and
Elve(t + 7)u,(t)] = —E[v,(t + 7)re(t))] (2.189)
Thus,
Ro(r) = E{[ve(t +7) + jus(t + 7)][ve(t) — jus(8)]}
= R, (7)+ R, (1) + j{E[vs(t + 7)vc(t)] - Elve(t + 7)u,(8)]}
= 2[R,.(7) + jRu,u.(7)] (2.190)
where
Ry (7) £ By, (t + 7)ve(t)) (2.191)

From (2.188) to (2.191) we can draw the following conclusions:
(a) As R;(0) = E|(¢)? is a real quantity, Egs. (2.190) and (2.191) show that
E[v,(t)v.(t)] =0 (2.192)

That is, for any given ¢, v,(t) and v(¢) are uncorrelated RVs. As a special
case, if v(t) is a Gaussian process, v,(t) and v,(t) are independent RV's for

any given ¢.
(b) From (2.185) and (2.186) it follows that

Elo(t)]? = E[o(t)[* = 2E[v*(2)] (2.193)

Similarly, from (2.188), (2.190), and result (a) we have
E|5(t)[* = 2E[we(t)] = 2E[v2(2)] (2.194)

Thus,

Elv.(t)]?* = E[V2(t)] = E[V2(¢)] (2.195)
That is, the average power of v,(t) and v,(¢) equals that of the original
process v(t).

(c) If the power spectrum of the process v(t) is symmetric around the fre-

quency fo, from (2.187) it follows that the power spectrum of (t) is

an even function. This implies that R;(7) is real for all 7, so (2.190)
and (2.191) yield

El,(t+T)ve(t)) =0  forallr (2.196)

This means that the processes v,(t) and v,(t) are uncorrelated [or indepen-
dent when v(t) is Gaussian]. Thus, in this situation,

Go(f) = 26u.(f) = 26..(f) (2.197)

L
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Example 2.16 Let z(t) be a bandpass real signal, and let Gz(f) be the power density
spectrum of its complex envelope. From (2.185) and (2.187) we have

g:(f) = Gi(f+ /o)
4G:(f + fo) u(f + fo)

Recalling the fact that G, (f) must be an even function of f, the last equality yields

1

Ga(f) = §102(~f = fo) + Ga(f = fo]

As an example, consider the signal
o0

z(t) =R Z ans(t —nT) . ef?mfot

nN=—00

where E[or,] = 0 and B[ mal] = 0280,m.
From (2.122)—(2.124) we obtain the power spectrum of the complex envelope of
z(t):
%

Gs(f) = F 1SN

Hence, the power spectrum of the signal is

Gu(f) = F2S(=f - ) 41507 ~ Fl).

Narrowband white noise

As we shall see in later chapters, in problems concerning narrowband signals
contaminated by additive noise it is usual to assume, as a model for the noise,
a Gaussian process with a power density spectrum that is constant in a finite
frequency interval and zero elsewhere. This occurs because a truly white noise
would have an infinite power (which is physically meaningless), and because any
mixture of signal plus noise is always observed at the output of a bandpass filter
that is usually not wider than the band occupied by the signal. Thus, in practice,
we can assume that the noise has a finite bandwidth, an assumption entailing no
loss of accuracy if the noise has a bandwidth much wider than the filter’s.

A narrowband white noise is a real, zero-mean, stationary random process
whose power density spectrum is constant over a finite frequency interval not
including the origin. In Fig. 2.20 we showed the power spectrum of a narrowband
white noise with a power spectral density Np/2 in the band B centered at f;.
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2.4.2. Bandpass systems

The complex envelope representation of narrowband signals can be extended to
the consideration of bandpass systems (i.e., systems whose response to any input
signal is a narrowband signal). In the following we shall see how to character-
ize the effects of a bandpass system directly in terms of complex envelopes. In
other words, assume that (%) is the response of a bandpass system to the nar-
rowband signal z(t). We want to characterize a system whose response to Z(t),
the complex envelope of z(t), is exactly §(¢), the complex envelope of ¥(t).

Bandpass linear systems

Hirst, consider a bandpass linear, time-invariant system with impulse response
h(t) and transfer function H(f). The analytic signal representation of h(t)
is h(t) = h(t) + jh(t), which corresponds to the transfer function H(f) =
2H(f)u(f)- If z(t) is the narrowband input signal and y(t) the response, the
analytic signal §(£) can be obtained by passing z(t) into the cascade of the lin-
ear system under consideration and a filter with a transfer function 2u(f) (see
Fig. 2.21 (a)). In a cascade of linear transformations, the order of the operations
can be reversed without altering the final result, so we can substitute the scheme
of Fig. 2.21 (b) for that of Fig. 2.21 (a). Next, observe that £(t) has a Fourier
transform equal to zero for f < 0. Hence, we can substitute a system with
transfer function H(f) for another system having a transfer function H (f)u(f)
without altering the output. The latter system (see Fig. 2.21 (c)) has an impulse
response 3h(t), input £(t), and output §(t). These signals are related by the
convolution integral

() = %/_Z h(r)3(t — r) dr (2.198)

This equation becomes particularly useful if both Z(t) and h(t) are expressed in
terms of their complex envelopes. We get

. (=
§() = %eﬂ"f"t | R~ dr (2.199)
—0o0
which shows that §(t) is a narrowband signal, centered at f,, with complex en-

velope
1 roe

90 =3 / h(r)&(t — ) dr (2.200)

-0
In conclusion, the complex envelope of the response of a bandpass linear, time-
invariant system with impulse response A(t) to a given narrowband signal z(t)
can be obtained by passing the complex envelope Z(t) through the low-pass

11
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x(?) ¥() (8
—= H(f) u(f) ——
(a)
x() x(t) y@)
— 2u(f) Hf) ——
(b)
x(1) x() y(8)
— 2u(f) H(fu( flF—
(c)

Figure 2.21: Three equivalent schemes to represent the analytic signal associated with
the output of a linear system.

equivalent system whose impulse response is %ﬁ(t), or, equivalently, whose trans-
fer function is H(f + fo)u(f + fo) (see Fig. 2.22). Notice that only if H(f) is
symmetric around f; will the low-pass equivalent system have a real impulse re-
sponse. A nonreal impulse response will induce in the output signal a shift of the
phase and a correlation between the in-phase and quadrature components. These
effects are usually undesired.

Example 2.17 Let .
z(t) = z(t)ef 2ot (2.201)

where the Fourier transform of z(t) is zero for [f| > B, B < fo. Consider an LRC
parallel resonator. Its transfer function is

- j2mfL 2.202
H(f) =3 +j2rfL —4n2f2LC (2:202)

The corresponding impulse response is, for £ > 0,

h(t) = _ngo e~ "fot/2Q oog 2 fot — %‘?e"’fﬂ/zq sin 2 fot (2.203)

-

2.4.  Narrowband signals and bandpass systems 65

H(f)

/N N\ .
% (‘) fo f
a

H(f+ fo)u(f+fo)

T | T Kl

(b)

Figure 2.22: (a) Transfer function of a bandpass linear system; (b) transfer function of
a low-pass equivalent linear system.

where
A (o}
Q=Ryg

is the “quality factor” of the circuit, and

s ZWJL_C (1 B %’5) N

If Q@ > 1, the computation of h(t) becomes very easy. In fact, the second term in
the RHS of (2.203) can be disregarded. Additionally, we can safely assume that the
exponential factor exp{—m fot/2Q} is a bandlimited signal. Thus, from (2.203), we
have

h(t) = Zg—f"e-"ﬂ"/w grht >0, (2.204)
where
1
fo= i
In conclusion,
h(t) = QZ—f" et 45 (2.205)

ki
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Notice that the approximations in the computation of h(t) make the Fourier transform
of (2.205) symmetric around the origin of the frequency axis. o

Bandpass memoryless nonlinear systems

We shall now examine a class of nonlinear systems that are often encountered
in radio-frequency transmission. We are especially interested in nonlinear time-
invariant systems whose input signal bandwidth is so narrow that the system’s
behavior is essentially frequency-independent. Moreover, the system is assumed
to be bandpass. This in turn means that it can be thought of as being followed by
a zonal filter whose aim is to stop all the frequency components of the output not
close to the center frequency of the input signal. For a simple example of such a
system, consider a sinusoidal signal z(t) = A cos 27 f,t sent into a time-invariant
nonlinear system. Its output includes a sum of several harmonics centered at
frequencies 0, fy, 2fo, .... If only the harmonic at fj is retained at the output,
the observed output signal is a sinusoid y(t) = F(A) cos[27 fot + (A)]. If we
consider the complex envelopes Z(t) = A and §(t) = F(A) exp[jp(A)], we see
that the system operation for sinusoidal inputs can be characterized by the two
functions F(-) and (- ). In the following we shall prove that this result holds
true even when the input signal is a more general narrowband signal.

Consider a narrowband signal z(t), with a spectrum centered at fo. Its ana-
lytic signal representation can be given the form

#(t) = Ag(t) Jlrfotte=(t) (2.206)
where A;(t) and ¢, (t) are baseband signals. Letting

e (t) 2 27 fot + pu(t) (2.207)
we rewrite (2.206) as
B(t) = Ag(t) 9% (2.208)

Consider then the effect of a nonlinear memoryless system whose input-output
relationship is assumed to have the form

y(t) = Se[Az(t) cos . (2)] + So[Az(t) sin P (2))] (2.209)

where S.{-] is an even function of 1,(t), and S,[:] is an odd function. It is
seen that y(t), when expressed as a function of 1;(t), is periodic with period 27.
Thus, we can expand y(t) in a Fourier series:

o0

y(t) = yl=()] = 3 colAs(t)] =0 (2.210)

4 {=—o00
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Figure 2.23: Spectrum of the output of a memoryless nonlinear system whose input is a
narrowband signal centered at frequency fo. ’

where
ce(A) & % /0 2"{Se[A cos Y] + S,[Asin ] }e™% dy (2:211)

The quantity c,(A) is generally complex. Its real and imaginary part are, respec-
tively,

Rlce(A)] = 2% /0 *"'S,[A cos ] cos & dip 2.212)

and
See(A)] = % /0 "3, [Asin ] sin & dyp (2.213)

From the definition (2.207) of ,(t), we see how (2.210) expresses the fact
that the spectrum of y(¢) includes several spectral components, each centered
around the frequencies ££f5, £ = 0,1, .... Figure 2.23 illustrates qualitatively
this situation. Notice that we must assume that the signals c;[ A, (¢)] have spectra
that do not significantly extend beyond the interval (— fo/2, fo/2).

The assumption that the memoryless system is bandpass implies that only
one of the spectral components of y(t) can survive at the system output (i.e.,
that centered at 3: ). The analytic-signal representation of the output of such a
bandpass memoryless system is then

§(t) = c[AL(t)]e’*=® (2214)

where
c(A) £ 26, (A) (2.215)

As ¢(A) is generally a complex number, we can put it in the form

c(A) = F(A)edA) (2.216)

G
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Figure 2.24: Representation of a bandpass memoryless nonlinear system.

so that
§(t) = F[A; (t)]e:i{wz(t)wlftz(t)]) 2217

or, in terms of complex envelopes,
g(t) = F[Az(t)]ei{wz(t)w[ﬁz(t)l) (2.218)
Comparing the last equation with the complex envelope of the input signal,
B(t) = Ag(t)e?*=®) (2.219)

we can see that the effect of a bandpass memoryless nonlinear system is to alter
the amplitude and to shift the phase of the input signal according to a law that
depends only on the values of its instantaneous envelope. This shows, in partic-
ular, that the system can be characterized by assigning the two functions F[- I8
[ -], which describe the so-called AM/AM conversion and AM/PM conversion
effects of the system (AM denotes amplitude modulation and PM phase modu-
lation). These functions can be determined experimentally by taking as an input
signal a single sinusoid with a frequency close to f; and an envelope A, and by
measuring, for different values of A, the output envelope F(A) and the output
phase shift ¢(A). Notice that, for the validity of this nonlinear system model,
the functions F(A) and p(A) should not depend appreciably on the frequency of
the test sinusoid as it varies within the range of interest.

Finally, notice that the system we are dealing with can be represented as in
Fig. 2.24, where S, and S, denote memoryless nonlinear devices. From this
scheme it is seen that only if S, is present can the system show an AM/PM
conversion effect.
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Example 2.18 (Polynomial-law devices) Consider a nonlinear system whose input-
output relationship is

y(t) = Czi(t) (2.220)
£ an integer greater than 1. If z(t) is written in the form
z(t) = R[E()eINY
= %[i(t)eﬂ"f“ + &*(t)e 9 ot) (2.221)
we get
z(t) = 21—‘?0 (2) [E(2)] [£° (8)]¢ keI 2 (2k-Ofot (2.222)

When y(t) is filtered through a zonal filter, all its frequency components other than those
centered at + f will be removed. Thus, only the terms with 2k — £ = *1 will contribute
to the system output. This shows, in particular, that only when £ is odd can the output of
the zonal filter be nonzero. For £ odd, the complex envelope of the system output is then

_._ C 4 =1
§(t) = =1 ((l+ 1)/2) ()2 (2.223)
More generally, if the system is polynomial, i.e.,
L
y(t) = 3" aex(t), (2.224)
i=1
we shall get, for L odd,
(L-1)/2
- . @om+1 (Zm+ 1Y _ o
t) = &(¢ . 2.225
=30 3 (m+1)lx(t)l (2.225)

Notice that polynomial-law devices with real coefficients never exhibit AM/PM conver-
sion. a

2.5. Discrete representation of continuous signals

In this section we consider the problem of associating a continuous signal with a
discrete representation. In other words, we wish to represent a given continuous
signal in terms of a (possibly finite) sequence. The representation may be exact
or only approximate, in which case it will be chosen on the basis of acompromise
between accuracy and simplicity.

As we shall see in later chapters, this representation makes it possible to
impart a geometric interpretation to a signal set, and hence to visualize it by
extracting from it the features that are relevant when the signals are used for
modulation.

[LER
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2.5.1. Orthonormal expansions of finite-energy signals

A fundamental type of discrete representation is based on sets of signals called
orthonormal. To define these sets, consider first the notion of the scalar prod-
uct between two finite-energy signals z(t) and y(¢): it is denoted by (z,y) and
defined as the value of the integral

(c, y) 2 [_ D:oa:(t)y' () dt (2.226)

If X(f) and Y (f) denote the Fourier transforms of z(t) and y(t), respectively,
and we let

X, V)= [~ XY (2227)

Parseval’s equality relates the scalar products defined in the time and in the fre-
quency domain:
(r,y)=(X,Y) (2.228)

If (z, y) = 0, or equivalently (X, Y) = 0, the signals z(¢) and y(t) are called
orthogonal. From the definitions of scalar product and of orthogonality, it im-
mediately follows that (z, ) = &, the energy of z(t), and that the energy of the
sum of two orthogonal signals equals the sum of their energies.

Suppose now that we have a sequence ((t)):er of orthogonal signals; that
is,

(1, ;) = { g :;ﬁ (2.229)

where 1 is a finite or countable index set.

If & = 1forall ¢ € I, the signals of this sequence are called orthonormal.
Obviously, an orthonormal sequence can be obtained from an orthogonal one
by dividing each ¥;(t) by V€.. Given an orthonormal sequence, we wish to
approximate a given finite-energy signal z(t) with a linear combination of signals
belonging to this sequence, that is, with the signal

() £ Y () 2.230)
i€l
A suitable criterion for the choice of the constants ¢; appearing in (2.230), and
hence of the approximation Z(t), is to minimize the energy of the error signal

e(t) £ z(t) — 3(t) (2.231)

Thus, the task is to minimize

A

, £ £ /Z l2(t) — 2(0)| dt
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£+ & — MR (z, T)
E 4+ el 2Ry cilz, ¥i) (2.232)

i€l i€l

with respect to ¢;, ¢ € I. By completing the square, we can also write

Ee=E+ Yo~ (2, )P = iz, )2 (2.233)

i€l i€l

As the middle term in the RHS of (2.233) is nonnegative, £, is minimized if the
¢; are chosen such as to render this term equal to zero. This is achieved for

o0
¢ =(z, %) = / z(t)y; (t) dt, iel (2.234)
—00
The minimum value of &, is then given by
Emin =& — 3 laf (2.235)
i€l

When ¢;, 4 € 1, are computed using (2.234), the signal Z(t) of (2.230) is called
the projection of z(t) onto the space spanned by the signals of the sequence
(#:(t))ie1. that is, on the set of signals that can be expressed as linear combina-
tions of the 1/;(¢). This denomination stems from the fact that, if (2.234) holds,
the error €(t) is orthogonal to every (), ¢ € 1, and hence to Z(¢). In fact,

(e %) = (-2 )
= (z, %) — (&, ¥)
= ¢g—c¢=0, 1€l

(See Fig. 2.25 for a pictorial interpretation of this property in the case I = {1, 2}.)

An important issue with this theory is the investigation of the conditions un-
der which (£.)min = 0. When this happens, the sequence (¢;(t)):er is said to be
complete for the signal z(t), and from (2.235) we have the equality

& =Y |af (2.236)
i€l
In this case we write
z(t) =y ci(t) (2.237)
i€l

although this equality is not to be interpreted in the sense that its RHS and LHS
are equal for every ¢, but rather in the sense that the energy of their difference is

ik
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Figure 2.25: Z(t) is the projection of z(t) onto U, the signal space spanned by 11 (t)
and 1,[)2(t).

zero. This fact is often expressed by saying that the RHS and LHS of (2.237) are
equal almost everywhere.

In conclusion, once an orthonormal signal set has been chosen, a signal z(t)
can be represented by the sequence (c;)ic1 defined by (2.234). This representa-
tion is exact (in the sense just specified) if the orthonormal set is complete with

respect to z(t).

Example 2.19 (The complex Fourier series) The orthonormal sequence

(= e,-kz,w)“”
\/T k=-—00

is compiete for every complex signal z(t) defined in the interval (—T/2, T/ 2) and hav-
ing bounded variation with finitely many discontinuity points. The expansion

2(t) = T te (=T/2,T/2), (2.238)

M8

1
vT ,

00

with
1 (T2 _jk2mt/T
== o(t)e TR T gt (2.239)
ok vT /-T/z ®

is the familiar complex Fourier-series representation. 0

<
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Gram-Schmidt procedure

Because of the importance of orthonormal signal sequences, algorithms for con-
structing these sequences are of interest. One such algorithm, which is compu-
tationally convenient because of its iterative nature, is called the Gram-Schmidt
orthogonalization procedure. Let a sequence (¢;(t))/%, of finite-energy signals
be given. We assume these signals to be linearly independent, i.e., to be such
that any linear combination ¥, ¢;¢;(t) is zero almost everywhere only if all
the ¢; are zero. An orthonormal sequence (1;(t))Y., is generated by using the
following algorithm (see Problem 2.21).
We first define the auxiliary signal 1] (t) equal to ¢, (2):

Ui (t) = 61(t)
then we normalize it to obtain the first orthonormal signal:

1(t
i) = A8
(%1, ¥1)
By subtracting from ¢, (t) its projection onto 3, (t) we obtain a signal orthogonal
to 1 (t), as shown in Fig. 2.26:
Y3(t) = @2(t) — (2, ¥1) ¥ (2)

that we normalize to obtain the second orthonormal signal:

¥a(8)
2(t) = e
valt) (5, ¥3)

By proceeding this way, we obtain the entire set of orthonormal signals. The
general step of the algorithm is then:

i-1

Yi(t) = it) — 2 (de, ¥e) Ye(t) (2.240)
=1

Pi(t) = _n) (2.241)
(¥, %)

fori =1,2,..., N (when i = 1 the sum in the first equality is empty).

Geometric representation of a set of signals

The theory of orthonormal expansions of finite-energy signals shows that a sig-
nal z(t) can be represented by the (generally complex) sequence (¢;);er of scalar
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Figure 2.26: Generating a signal orthogonal to (t).

products (2.234), once an orthonormal sequence that is complete for z(t) has
been provided. Now, if we consider a given sequence (;(t))iL, of N gnhonor—
mal real signals, it will be complete for any real z(t) that can be written as a
linear combination of the ¢;(t), that is, in the form

N
z(t) =z i) (2.242)
i=1
s
Thus, every such signal can be represented by the real N-vectorx = (z, .. -, ZNn),

or, equivalently, by a point in the N-dimensional Euclidean space (i.e., the space
of all real ordered N-tuples) whose coordinate axes correspond to the signals
¥i(t),i=1,...,N.

Consider now a set {z;(t)}}, of real signals. Can we find an orthonormal
sequence that is complete for these M signals? If so, we can represent a}cl(t),
z9(t), ..., Tar(t) as M vectors or as M points in a Euclidean space of su1tabl§
dimensionality. If the signals in the set {z;(t)}?, are linearly independent, it
suffices to apply to it the Gram-Schmidt procedure to find such an orthonqrmal
sequence. In fact, (2.240) shows that each of the ;(t) is expressed as a linear
combination of signals in {z;(t)},; hence, each of the z,(t) can be express;d
as a linear combination of the v;(t). Suppose, instead, that only N signals in
{z;(t)}}, are linearly independent, and hence M — N of them can be expressgd
as linear combinations of the remaining signals. In this case, the Gram-Schmidt
procedure can still be used, but it will produce only N < M nonzero orthonormal
signals. Every z;(¢) is then represented by the N-vector

4 X, = (za1, Tiz, -+ -5 Tinv) (2.243)
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where A
I,‘j=(l‘i,’t/)j), 1:=1,...,M, j=1,...,N (2244)

or, equivalently, as a point in the N-dimensional Euclidean space whose coor-
dinate axes correspond to the nonzero orthonormal signals found through the
Gram-Schmidt procedure. In this situation, we say that the signal set {z;(t)} M,
has dimensionality N.

Example 2.20 Consider the four signals
zi(t) = cos[mt + (1 — 1)w/2] t€(0,2), i=1,2,3,4 (2.245)
Using the Gram-Schmidt procedure, we get
1(t) = cos mt

Po(t) = —sinnt

and
Pa(t) = 4(t) =0

which shows that the signal set (2.245) has dimensionality 2 and is represented by the
four vectors:

X = (17 0) X2 = (07 1)7 X3 = (_1: 0) X4 = (07 _1)
The reader should observe that the M -signal set
z;(t) = cos[rt + 2(i - )w/M], t€(0,2), i=1,2...,M (2.246)

has dimensionality 2, and can also be represented using the same orthonormal basis. &

Computing signal distances and scalar products

Based on the procedure just developed, a real-signal set {z;(t)}, defined for
0 < ¢ < T can be represented by a set of vectors x; = {(z;, . .. ,Zin) in the N-
dimensional Euclidean space. By using (2.242) and orthonormality of the signals
¥i(t), it can be easily proved that the following holds for any i = 1,..., M:

T N
/0 () dt = |2 = 3 a4 2.247)
j=1

which shows that the energy of a signal equals the squared length of the vec-
tor representing it. This equivalence between signal energy and distance of the
vector from the origin is a very useful relation.
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Moreover, we have

T
/z,-(t)a:k(t) dt = (xi, Xe) Zz,,a:k, (2.248)
0

i=1

As two signals are orthogonal if their scalar product vanishes, we visualize or-
thogonal signals by two vectors perpendicular to each other.
Finally,

/T[.'Ei(t) - .’L'k(t)]2 dt = |x, bt xklz = |X,’|2 + |)(k|2 - 2()(,', Xk) (2249)
0

The latter quantity is the (Euclidean) distance between signals z;(t), zx(t), and
is equal to the squared distance between the two vectors X;, Xj.

Sampling expansion of bandlimited signals

Consider now the set of signals z(¢) strictly bandlimited in thg freq.uency interval
(=B, B), that is, such that their Fourier transform X (f) is identically zero for
|f| > B. An orthonormal basis for any such z(t) can be found as follows.
Expand X (f) in a Fourier series according to (2.238) and (2.239). Then take the
inverse Fourier transform to get an expansion for z(t). This procedure yields

X(f) = \/L_ i ce™/B fe (=B, B) (2.250)
= % / X (f)e=#11B af @251)
-B
and finally
Z(t) = / e-Jint/Beitnft df

ﬁﬁ\

(2.252)

©  sin2aB[t —1i/(2B)]
:‘; 2r B[t —i/(2B)]

which is an expansion valid for every z(t) with bandwidth B. Observing further

that the integral in the RHS of (2.251) is proportional to. the inverse Fourier
transform of X (f) computed for ¢ = i/(2B), ¢; can be put in the form

1 i
_ i (2.253)
“=RB" (23)
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This shows that the coefficients of the series expansion (2.252) are the samples
of the signal z(¢) taken at the time instants i/(2B), —co < i < co. Explicitly,
from (2.250) and (2.253) we obtain

l oQ

Z 17(515) e=i271i/(2B) (2.254)

X(f)=2—§__

and hence, by taking the inverse Fourier transform,

& i \ sin2x B[t — i/(2B)]
== 3 z(ﬁ) 37 B[t —/(2B)] (2:255)

i=—00

Equation (2.255) shows that every finite-energy signal with bandwidth B can
be fully recovered from the knowledge of its samples taken at the rate of 2B sam-
ples per second. More generally, as any signal bandlimited in (—B, B) is also
bandlimited in (—B’, B'), where B’ > B, we can say that any finite-energy band-
limited signal can be represented by using the sequence of its samples, provided
that they are taken at a rate nor less than 2B. This minimum sampling rate of
2B is usually called the Nyquist sampling rate for z(t). If z(t) is a narrowband
signal, it should be observed that it is convenient to apply the sampling expan-
sion (2.255) to its complex envelope instead of the signal itself. This results in a
much lower Nyquist frequency and, hence, in a more economical representation.

Observe now that (2.255) can also be written in the form

= { sin 2w Bt
_ 2\ it —s sin £m e 2.2
() {.-:‘j‘mz (23) 5t z/(2B)]} e (2.256)
Now, sin(27 Bt) /(2w Bt) can be interpreted as the impulse response of a linear,
time-invariant system with frequency response

1/(2B), |fI<B

H(f) = { 0, elsewhere (2.257)

that is, an ideal low-pass filter with cutoff frequency B. Thus, (2.256) suggests
how to implement a system that recovers z(t) from its samples. The sequence
of samples is used to modulate linearly a train of impulses, which is then passed
through an ideal low-pass filter (see Fig. 2.27).

A frequency-domain interpretation of the reconstruction of a sampled signal
can also be provided. Let the signal z(¢) be sampled every T, seconds, and
observe that we can write

o0
> z(iTy)6(t - iTy) E 8(t —iT,) (2.258)

i=-00 i=—o00
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((i2B));% - o0 x(®)

H(f) —>

S 5(t-il2B)

{=—0o0

Figure 2.27: Recovering a bandlimited signal z(t) from its samples. H(f) is an ideal
low-pass filter with cutoff frequency B.

The spectrum of this signal is obtained by taking the convolution of X (f) with
the Fourier transform of a train of impulses with period T,. This is given by

= > 8(f—i/T.)

i=—00

[use (2.109)]. Thus, the spectrum of (2.258) is
nel f’: ( o i) (2.259)
Ts ;20 T,

which is periodic with period 1/7, (see Fig. 2.28). .

The original signal can be recovered from X,(f) by using thf: ideal low-
pass filter whose transfer function H (f) is shown in Fig. 2.28, prov1c}ed that th.e
translated copies of X ( f) forming X,(f) do not overlap. This condition holds if

1 .
and only if B < T~ B, that is,

s

fs > 2B (2.260)

where f, =S /Ty is the sampling rate.

If (2.260) does not hold (i.e., the signal is sampled at a rate lower than
Nyquist’s), z(t) cannot be recovered exactly from its samples. The signal ob-
tained at the output of the ideal low-pass filter has the Fourier transform

H(F) X () {ZX (f =4/T), 1l <1/2T, 2.261)

==
0, elsewhere

-
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Figure 2.28: Sampling and reconstructing a bandlimited signal: frequency domain rep-
resentation.

It is important to observe that if this situation occurs (i.e., the signal is “un-
dersampled”), even the phase of the sampling process affects the shape of the
reconstructed signal. Specifically, if the sampled signal is

2(t) S 6(t - T, + ©)

i=—-00
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where © is a constant smaller than T}, at the output of the low-pass filter we get
a signal whose Fourier transform is

i X (f _ L) &1279/Ts lfl < L (2.262)
i=—00 T! ’ 2T_' :

If the bandwidth of z(t) does not exceed 1/(2T,), then (2.262) gives the spectrum
of z(t) (as it should). Otherwise, the shape of the signal recovered will also

depend on the value of ©.

2BT-theorem and the uncertainty principle

The sampling expansion (2.255), which is valid for any z(t) bandlimited in
the interval (— B, B), when applied to a signal vanishing outside the time in-
terval (0,T) has nonzero terms occurring only for 0 < i/(2B) < T (.., for
i=0,1,2,...,2BT). Thus, any bandlimited and time limited z(t) is completely
specified by 2BT + 1 ~ 2BT constants. For real signals, this fact can be sum-
marized by saying that “the space of real signals of duration T and bandwidth B
has dimension 2BT.”

However, this argument is fallacious, because no bandlimited signal (besides
the trivial null signal) can have a finite duration. The proof of this property
is based on the fact that a signal z(t) whose amplitude spectrum vanishes for
|f| > B can be written as

=)= [ 1X( f)eist ap (2.263)

Now, if we allow ¢ in (2.263) to be a complex variable, this extended z(t) is
an entire function of ¢. In other words, z(t) has no singularities in the finite ¢
plane, and its Taylor series expansion about every point has an infinite radius of
convergence. Thus, any z(t) vanishing on any interval of the time axis would
have all its derivatives zero at some interior point of the interval. Hence, its
Taylor series expansion would require it to be identically zero.

This impossibility for a signal to be simultaneously bandlimited and time
limited is a special case of the uncertainty principle for a signal and its Fourier
transform. One way to describe this principle is the following (stated without
proof). Define two quantities & € [0, 1] and 8 € [0, 1] that measure the fraction
of the signal energy concentrated in the time interval (~T/2, T/2) and in the
frequency interval (— B, B), respectively:

A1l (T2 )
al 2.264
) af o /_ 1 POF dt (2.264)
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c(x)
N

Figure 2.29: The function c()g) of the uncertainty principle.

and 1 8
4 2 2
P ¢ [P (2.265)

where £, denotes the energy of the signal z(t). The uncertainty principle states

that
7BT > c(Xo) (2.266)

where
Xo =cos?(f; +6,), cos?fy =a, cos’by=0 (2.267)

and the function ¢( - ) is shown in Fig. 2.29. Notice that ¢()e) — 00 as Ag — 1.

With a signal both time limited and bandlimited, we should have a = g=1
for a finite product BT. But this would be in conflict with (2.266), because in
this case Mg = 1, and hence ¢()\) = oo.

Example 2.21 For an example of the application of the uncertainty principle, deter-
mine the minimum value of the product #BT for a = # = 0.95. From (2.267) we
get 6 = 6 = 0.2255 and Ay = cos2 0.4510 = 0.81. The curve in Fig. 2.29 yields
c{Ap) 2 1.6. ]

Let us now return to our 2BT theorem. Although it is not strictly true in
the form stated at the beginning of this section, it can be reformulated in a more
rigorous manner. To this end, we must recognize the inherent physical limi-
tations of measuring equipment, and the consequent inability of measuring an
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energy smaller than the energy resolution of this equipment. Thus, denote by ¢
the smallest amount of energy that we could measure. We say that a real signal
z(t) is time limited to (—T/2, T/2) at level € if

/ c2(t)dt < € (2.268)
i>T/2

and is bandlimited with bandwidth B at level ¢ if
[ IX(DPdr<e (2.269)
|fI>B

Conditions (2.268) and (2.269) indicate that the energy lying outside the time in-
terval (—T'/2, T/2) and the frequency range (—B, B) is less than we can mea-
sure. Furthermore, a set S of real signals is said to have dimension N at level €
if there is a set of N signals {t;(¢)}; such that, for each z(t) € S, there exist
a,as, ..., ay such that

/ . [z(t) - iai"/’i(t)r dt < e (2.270)

-T/2 =
and there is no set of N —1 functions that will approximate every z(t) € Sin this
manner. In words, every signal in S can be so well approximated in (—T'/2, T/2)
by a linear combination of 1 (t), ...,1n(t) that we could not measure the en-

ergy of the difference between the signal and its approximation. With these
definitions, we have the following theorem, due to Slepian (1976):

Theorem 2.1 Let S, be the set of real signals time limited to (—T'/2, T/2) at
level € and bandlimited to (—B, B) at level e. Let N = N(B, T ¢, ¢) be the
approximate dimension of S, at level €. Then, for every €' > ¢,

1 1
im = N = im — N= 2.271
Jim =N(B, T, €)=2B,  lim -=N(B, T,¢, €)=T (2271

This “2BT-theorem” renders precise the concept that for large BT the space
of signals of approximate duration 7" and approximate bandwidth B has approx-
imate dimension 2BT. The proof of the theorem will not be reported here: the
interested reader is referred to Slepian (1976).

2.5.2. Orthonormal expansions of random signals

We shall now briefly consider the problem of associating a discrete representa-
tion with a random signal £(¢). Quite generally, we look for a series expansion
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of the form -
)= 2 nws(t) (2.272)
i=—00
where ¢;(t), —o00 < i < 00, are deterministic random functions, ; are random
variables, and the equality is to be interpreted in the sense that

2

k
)=~ S ws(®)] =0 (2.273)

lim E
k—o0 .
i=—k

Various constraints may be imposed on £(t), 1;(t), and the random sequence
(i), thus obtaining different families of expansions. In the Karhunen-Loéve
expansion, {(t) is a WS stationary process defined in the finite interval (0, T),
{1:()}2, is a set of finite-energy orthogonal signals, and the coefficients -y; are
uncorrelated random variables.

If the process £(t) is bandlimited, in the sense that its power spectrum G (f)
vanishes outside the interval (— B, B), we have the sampling expansion

& 1\ sin2xB(t — i/(2B))
60 =3 ¢(35) 27 Bt - i/(2B)) @274

i=-00

The coefficients £(i/(2B)) are uncorrelated if and only if G¢(f) is constant over
(-B, B).

More general classes of series representations of WS stationary random pro-
cesses were derived by Masry, Liu, and Steiglitz (1968) and Campbell (1969).
Similar results were obtained by Cambanis and Liu (1970) for harmonizable pro-
cesses, and for an even more general class of processes (the “weakly continuous”
processes) by Cambanis and Masry (1971).

2.6. Elements of detection theory

In this section we examine the problem of recognizing a signal chosen at ran-
dom (with known probabilities) from a finite known set {s;(¢)}}, once it has
been perturbed by a random disturbance in the form of a noise process v(t) in-
dependent of the signal and added to it. More specifically, the problem is to

decide which one, among the signals s;(t), s2(2), ..., sa(t), has given rise to
the observed signal y(t), when it is known that y(t) has the form
y(t) = s;(t) + v(t) (2.275)

for some 7, 1 < 7 £ M. Signals and noise may be either real or complex (i.e.,
complex envelopes of narrowband time functions). It will be assumed here that

i
i
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v(t) is a white Gaussian process, with power spectral density Ny/2 (real signals)
or 2N, (complex envelopes). The signals dealt with have a finite energy and a
finite duration. Also, their starting and ending times are known to the observer.
We assume that s;(t), 1 < i < M, are defined in the interval 0 < ¢ < T and that
y(t) is observed in the same interval. o

This problem, called a detection problem, is central in digital transmission
theory. It will be provided further motivation in Chapter 4, which includes a
number of applications.

2.6.1. Optimum detector: One real signal in noise

We shall consider first, for simplicity’s sake, the case in which there are only
two signals, one of which is zero. Thus, the task is to decide between the two

hypotheses

Hy: y(t) =v(t)
H, - y(t) = s(t) + v(t) (2.276)

where s(t) is a finite-energy real signal. The decision is based on the observation
of y(t) for 0 < t < T, and we want it to be made in such a way that the pfoba-
bility of a wrong decision is minimized. In words, we say that H (respectwe.ly,
Hy) is true when the observed signal contains (respectively, does not contain)
s(t).

( )A basic step in our derivation of the optimum detector is the discrete repre-
sentation of the signals involved, which allows us to avoid further consideration
of time functions. To do this, we expand y(2) in an orthonormal series and rep-
resent it using the sequence of its coefficients. As a basis for this expansion,
we choose any complete sequence of real signals (¥;(t))$2,, orthonormal in the
interval (0, T) and such that ¥, (t) = s(t)/ V&, (see Problem 2.22). Hence, s(t)
will be represented by the sequence (v/€5,0,0,...) and v(t) by the sequence
(11, va, vs, . ..), where

w2 /OT V)t dt,  i=1,2,... 2277
By direct calculation it can be shown that E{»;} = 0,4 =1,2,...,and
Bluws) = [ [ B Oun) (o) dedr
= D [ - o) dear

. = % T1/)i(t)1/)j(f) dt = Nzg‘sij 4,j=12,... 2.278)
0
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Since v;,4 = 1,2, .. ., are Gaussian RVs, (2.278) shows that they are indepen-
dent. In terms of these discrete representations, we can formulate our decision
problem as follows. Decide between the hypotheses

Hy: (Y2, = (n, va,-..)
H: (W& =0+yE .. 2.279)

on the basis of the observation of the quantities

y,.é/OTy(t)u;,.(t) dt, i=1,2,... (2.280)

Consider now a crucial point. Under both hypotheses H and H,, the observed
quantities Y3, Y3, ..., are equal to vs, v, ..., respectively, and these are inde-
pendent of each other and Y;. Thus, the observation of Y3, Y3, .. ., does not add
any information to the decision process, and hence it can be based solely on the
observation of

v, 2 % /0 T y(t)s(e) dt 2.281)

(Notice that the assumption of a Gaussian noise is crucial here. Without it,
Y,, Y3, ... would only be uncorrelated with Y, rather than independent of it.)

In conclusion, the problem is reduced to the decision between the two hy-
potheses

Ho : }’1 =0
H Yi=u + 4/, (2.282)

upon observation of Y as defined in (2.281). The quantity Y; is called the suf-
ficient statistics for deciding between H, and H;, because it extracts from the
observed signal y(t) all that is required to perform the decision. All other infor-
mation about y(t) is irrelevant to the decision process.

Since the decision is based only on the observation of the scalar quantity
Y1, the optimum detector will first compute the scalar product (2.281) of the
observed signal y(t) and s(t). Then it will choose either Hy or H; according to
the value taken by Y;. If we denote by S; and Sy = R — S, two subsets of the
real line R, the decision rule is .

choose Hy ify; € Sy
choose H, ify, €5, (2.283)

where ¥, is the observed value of the random variable Y;. Hence, the optimum
decision rule can be specified by choosing Sy and S, in such a way that the
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average error probability is minimized. The error probability is given by

P(e) =
= /; pllelﬂl('y | Hl) dy + /;1 pOfY1|Ho(y | HO) dy

= /thfmm(y | Hy) dy — /sl pofrim (¥ | H1)dy+/s1 DofriHe(y | Ho) dy

=p - /sl[plfmm (y | H1) = pofrita, (v | Ho)l dy (2.284)

where pg 2 P{Hp}, ;1 2 {H,} are the a priori probabilities that Hy is true [i.e.,
the observed signal does not contain s(¢)] and H} is true [i.e., the observed signal
contains s(t)], respectively. To minimize P(e), we should maximize the contri-
bution to the integral of the term in brackets in the last expression of (2.284).
This can be done by including in S; all the values y taken on by ¥ such that
p1fym (¥ | H) > pofvim(y | Ho) and in Sy the remaining values. Values
of Y; such that the integrand is zero do not affect the value of P(e), and hence
may be included in either Sy or S; arbitrarily. If we define the likelikood ratio
between hypotheses Hy and H; as

a frym(y | H1) 2.285
AW = v Ho) (2259

the decision rule becomes

choose Hy, ifA(y) < f—)q
1

choose Hy  if A(yr) > 22 (2.286)

»n
In conclusion, the optimum detector consists of a device that computes the
likelihood ratio A(y;) and compares its value with the threshold po/p:. Explic-
itly, we have

e-(y—ﬂ:)z/No
AY) = —m
2 1
= exp {my\/a ~ mgs} (2.287)

so that, using (2.281),

AY:) = exp {.A% / " y(t)s(t) dt — Nio / " 52(1) dt} (2.288)
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Because of the likelihood ratio’s structure, it is customary to define the log-
likelihood ratio as the logarithm of A(-):

InA(y), (2.289)

so (2.288) becomes

AN) = N%/OTy(t)S(t) dt — —/OT s%(t) dt (2.290)

and the decision rule becomes

choose Hy if A(y1) <In 1;_0
, 1

choose H,  if A(y) > In 22 (2.291)
Y48

An important special case occurs when pg = p; (i.e., the two hypotheses are
equally likely). In such a case, the decision is made by comparing A(y,) against
a zero threshold. Moreover, from (2.290) it is seen that the value of the constant
N, is not relevant to the decision. Hence, when py = p; the decision procedure
does not depend on the spectral density of the noise. This simplification and the
fact that the a priori probabilities py and p; might be unknown justify the frequent
use of the simplified decision rule (called the maximum likelihood, or ML, rule):

choose Hy if A(y1) <0
choose H; if A(y;) >0 (2.292)

although it gives minimum error probability only when py = p;. The rule (2.291)
is referred to as the maximum a posteriori probability, or MAP, rule. The struc-
ture of the ML detector is shown in Fig. 2.30.

Example 2.22 (The integrate and-dump receiver) A simple special case of the gen-
eral ML detector previously considered arises when the signal s(¢) has a constant ampli-
tude A in the interval 0 < ¢ < T'. The task is then to decide between the two hypotheses

Ho:  ylt)=v(t)
Hi:  y(t)=A+v(t) (2.293)

upon observation of y(¢) for 0 < ¢ < T. In this case, £ = A>T, and from (2.281) we
have

Y L T di 2.294
l—ﬁ/o y(t) dt (2:294)
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Figure 2.30: ML detection of a real signal s5(t) in white Gaussian noise.

Equation (2.294) shows that the sufficient statistics for the detection are computed by
averaging out the noise from the observed signal. This is obtained by integrating y(2)
over the observation interval.

Consider the performance of this detector when pp = p1. The RV

nt = [Cuwa (2.295)
VT Jo
is Gaussian, with mean zero and variance No/2. Thus, the error probability under Hy
(i.e., the probability of choosing Hy when Hy is true) is

P(e| Ho) = P{M¥1)>0]| Ho}
= P{n> Aﬁ/z}

1 1 /Azl )
= = iy Jubet 2.296
2erfc (2 ~ ( )

where erfc () is the complementary error function (see Appendix A). Similarly, the
error probability under Hj is

P(e| Hi) P{Ax1) < 0| Hi}

= P{V1<—A\/T/2}
1 1 [A?2T

-1 _‘/__) 2.297
2crfc (2 N, (2.297)

4 1 AT
P(e) = P(e| Ho)po + P(e | Hi)pr = %erfc (5\/ Wﬁ—) (2.298)

If we define the signal-to-noise ratio

so that

A AT
2 - 2.299
- = "No (2.299)
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it is seen that, as P(e) is a monotone decreasing function of 7, the error probability will
decrease by increasing the level A, or by increasing the duration T of the observation
interval, or by decreasing the noise spectral density. |

Matched filter

Consider again (2.281). This equation shows that the sufficient statistics can be
obtained, apart from a constant factor, as the output at time ¢ = T of a linear,
time-invariant filter whose impulse response is

h(t) £ s(T - t) (2.300)

In fact, with this definition we have

y(t) * h(t)|,_p = /0 T (AT = 7)dr = /o T y(r)s(r) dr (2.301)

A filter whose impulse response is (2.300), or, equivalently, whose transfer func-
tion is

H(f) £ 5*(f)e~ T (2:302)
where S(f) & Fls(t)), is called the filter matched to the signal s(t). Thus, we
can say that a matched filter whose output is sampled at t = T extracts from the
observed signal y(t) the sufficient statistics for our decision problem.

An important property of the matched filter is that it maximizes the signal-to-
noise ratio at its output, in the following sense. When the filter input is the sum of
the signal s(t) plus white noise v(t), at time ¢ = T its output will be made up of
two terms. The first is the signal part {2 H(f)S(f)e’*™/T df, where H(f) is the
transfer function of the filter. The second is the noise part, a Gaussian RV with
mean zero and variance (Ny/2) [, |H(f)|? df. If we define the signal-to-noise
ratio at the filter output

L L anspera]
(No/2) [ H(PPd

(i.e., the ratio between the instantaneous power of the signal part and the vari-
ance of the noise part), we can show that (2 is maximized if H(f) has the
form (2.302); that is, if the filter is matched to the signal s(t). The proof is based
on Schwarz’s inequality, which states that if A(-) and B(-) are two complex
functions, then

(2.303)

\f AB*|> < [|A]® J|B}? (2.304)
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with equality if and only if A = aB*, where & is any complex constant. Us-
ing (2.304) in (2.303), we get

[e~] o 2
, L HOPE [ ISOPY g

< = 5 (2.305)
< | JHDr ‘

Thus, the maximum value of the signal-to-noise ratio ¢? is obtained for
H(f) = aS*(f)e > /T (2.306)

Since a can be any constant, we can set @ = 1 without loss of optimality, so
that the filter sought is indeed the matched filter as defined by (2.302). Notice
that this filter may be physically unrealizable, in which case it is necessary to
approximate it. Also, its response to the input s(¢) is, at time ¢ = T

[ mnspetar = [ is()Pdf =€, 2.307)

-

that is, the energy of s(t).

2.6.2. Optimum detector: M real signals in noise

We now want to solve the most general problem stated at the beginning of this
section, that is, to decide among the M hypotheses

H;:  y(t) =s;(t) +v(), i=12,...,.M (2.308)

upon observation of y(t) in the time interval (0, T). The M real signals s;(t),
j =1,..., M, are known and have a finite duration and a finite energy. Us-
ing the Gram-Schmidt procedure, we can determine an orthonormal signal set
{i(®)}L;, N < M, such that each s;(¢), j = 1,2,..., M, can be expressed
as a linear combination of these signals. Also, consider a complete orthonormal
signal sequence such that its first N signals are 11 (¢), ..., ¥~ (t) (see Problem

2.22). Denote with (1;(¢))2,, this sequence, and define
AT ) .
s =/ s;(Ow(t)dt, j=1,....M, i=12,... (2.309)
0

and v;, Y; as in (2.277) and (2.280), respectively. The decision problem can be
formulated in a discrete form as follows. Choose among the M hypotheses

Hj: ()2, = (spp+ w1, sig+1a,..., 8jn + VN, UN+1, UN42,---) (2.310)
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J=1,2,..., M, on the basis of the observation of the values taken by the RVs
Y1, Ya, ... As the noise components UN+1, VN2, ..., are independent of vy, ...,
vy, and of the hypothesis, observation of Yy, Yn42, ..., does not add any
information to the decision process. Thus, it can be based solely on the observa-

tion of ¥1, Y3, ..., Y. By defining the row N-vectors Y £ [}, Y3, ..., Yx),

v é [I/l, Vg, ..., I/N], and 85 g [Sjl, 552, «v vy st]vj = ]., ceny M, (2310) can
be reduced to the vector form

Hi: Y=s;+v, i=12....M (2.311)
Thus, the optimum detector sought for will operate as follows;
choose H; ify € S; (2.312)

where y denotes the observed value of the random vector Y, and S1,S2, ..., Sir
is a partition of the N-dimensional vector space such that the rule (2.312) gives
a minimum of the average error probability

M
Ple)=1=3p; [ frin(z| Hy)dz, 2.313)
=1 7S

where p; = P{H;},j = 1,2,...,M. Itis seen from (2.313) that P(e) is
minimized if every S; is chosen in such a way that

zZ € Sj if and only if ijY|H,- (Z ’ H]) = m?.xp,-fYIH,.(z I H,) (2314)

By combining (2.312) and (2.314), we obtain the MAP decision rule. In this
situation the M-dimensional regions S; are called the MAP decision regions. In
the special case where the hypotheses H; are equally likely, that is, pj =1/M,
7=1,2,..., M, (2.314) becomes

z€S; ifandonlyif fym,(z]|H;) = max fyx,(z | H;) (2.315)

which corresponds to the maximum-likelihood (ML) decision rule (accordingly,

the S; are called the ML decision regions). Although it minimizes the average

error probability only for equally likely H;, (2.315) is the most used detection

rule, so in the following we shall mostly confine our attention to ML detection.
By defining the auxiliary hypothesis

Hy: Y=v (2.316)
(2.315) can also be written in the form

z€S; ifandonlyif Aj(z) = maxA;(z) (2.317)
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where we define the likelihood ratios

As(y) = A5 90 .
)= el Ho)
Thus, the ML decision rule is
choose H; if A;(y) = max Ai(y) (2.319)

where, as usual, y denotes the observed value of Y. That is, the ML detector
operates by computing the M likelihood ratios A1 (y), A2(y), ---» Am(y), and
then choosing the hypothesis that corresponds to the largest among them. Let us
now compute explicitly the likelihood ratios (2.318). By observing th'at, under
hypothesis H;, j = 0,1,...,M, Y is a Gaussian random vector with mean
s; (or zero for j = 0), independent components, and variance Ny/2 for each
component, we have, forj =1,..., M,

exp[—(1/No) Iy — 55%] 2 ., 1 .
Aj(y) = xei[cp[—(l/oNo) IYIzi =exp{ﬁo-ysj—No |s,|2} (2320)

where as usual |x|? = xx’ = ¥, 22 denotes the squared modulus of the row
vector x. Consideration of the log-likelihood ratios

Ai(y) 2 lnAj(y) (2.321)
allows us to rewrite (2.319) in the following simple form:
1 1

choose H; if ys)— §|sj{2 = max {ys§ - —2-|s,-|2} (2.322)

A different expression for the log-likelihood ratio can be derived as follows.
Because

y(t) = i Yiu(t) (2.323)
i=1
and ~
sit) = sjete(t) (2.324)
=1
we have
T o N T
[ v0ssde = T3 Yoo [ wilowet)a
0 ' =161 0

1
M=
=
NCIJ

n
KA

(2.325)

>
o
o,
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and
T N N T
L850 = £S5 sisn [ velebule)ae
0 e=1k=1 0
Y 2
= Zsjt
=1
= Isif? (2.326)
so that

(=2 (T onenra— L [T _
Ail) = 3 /0 y(B)sy(t) dt = 5 /0 st)ydt, j=1,...,M (2327)

In Chapter 4 the structures of the optimum detectors based on (2.320) and (2.327)
will be reexamined and discussed.

2.6.3. Detection problem for complex signals

We shall now focus our attention on the problem of detecting complex signals
in Gaussian noise. This situation occurs when we are dealing with narrowband
signals that we want to describe using complex envelopes. Let us first consider
the detection of a single complex signal in noise, that is, the decision among the
hypotheses

Hy: y@)= Wu(t)
H: y(t)= %s(t) + %V(t) (2.328)

where t € (0,7), and y(t), v(t), and s(t) are complex envelopes of narrowband
signals (for notational simplicity, we omit the tilde). In particular, we have

5(t) = sc(t) + Jss(2) (2.329)
v(t) = ve(t) + jus(t) (2.330)
Y(t) = ye(t) + Jus(2) (2.331)

where v(t) is a complex Gaussian noise process with power spectral density
2Ny, and v, (t), v,(t) are independent, white Gaussian baseband processes with
power spectral density Ny (see Fig. 2.20). Hence, (1/v/2)v.(t) and (1/v/2)v,(t)
have spectral density Ny/2, and the energy of (1//2)s(t) is the same as the
real signal with which it is associated. Choose now a real orthonormal sequence





