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OpenMP

Open Multi-Processing
 API supporting multiplatform shared memory multiprocessing
 (Unix and Windows)
 Set of: compiler directives, libraries and environment variables
 Parallel code sections are executed in parallel using several threads 

and are managed by the runtime environment

Implementations
 Visual C++ 2005
 Intel compilers
 Sun Studio
 GCC 4.2 (or GCC 4.1 on some RH platforms)
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OpenMP

 Advantages
 Simple: need not deal with message passing
 Automatic data layout and decomposition
 Incremental parallelism
 Unified code for both serial and parallel applications

 Disadvantages
 Only runs efficiently in shared-memory multiprocessor platforms
 Requires a compiler that supports OpenMP
 Scalability is limited by memory architecture
 Synchronization between a subset of threads is not allowed
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Parallelism in OpenMP
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OpenMP Components

 Compiler directives
 Creating teams of threads
 Sharing the work among threads
 Synchronizing the threads

 Library routines
 To set and query thread attributes 

 Environment variables
 To control run-time behavior of the parallel program
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OpenMP Directives

 C / C++ Syntax
 OpenMP directives are expressed using pragmas:

 Applies to the succeeding structured block or OpenMP construct
 Can be single statement or compound statement
 Must have single entry at top, single exit at bottom

 Also structured comments for FORTRAN

#ifdef _OPENMP 

#pragma omp directive [clause[[,]clause...]] new-line

#endif
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Parallelism in OpenMP

 The parallel construct forms a team of threads in an 
OpenMP program and starts parallel execution

 A team of threads is created at run time for the parallel region
 The work is shared among the threads
 A nested parallel region is allowed

 May contain a team of one thread
 Nested parallelism is enabled with 

setenv OMP_NESTED TRUE
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#pragma omp parallel
{
/* Statement executed by all threads */

} /* Implicit barrier */



Example
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double xyz[5000][3];

printf(“entering parallel region\n”);

#pragma omp parallel

{

int tid;

tid = omp_get_thread_num();

compute_edges( tid, xyz );

}

printf(“parallel computation completed\n”);

Master only

Thread Forks

Thread Private
Space

Implicit barrier:
Thread Join

Master only

Shared between
all threads!



OpenMP Directives

 Basic Work Sharing Directives:
 #pragma omp for
 Each thread receives a portion of work to accomplish – data parallelism

 #pragma omp sections
 Each section is executed by a different thread – functional parallelism

 #pragma omp single
 Serialize a section of code, only one thread executes code block

 Need not be master thread
 (e.g., good for I/O)

 Can combine parallel construct with one work sharing 
construct:
 #pragma omp parallel for
 #pragma omp parallel sections
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OpenMP Directives (cont.)

 #pragma omp master
 Block will be executed by the master thread of the team

 #pragma omp critical [(name)]
 Block will be executed by single thread at a time

 #pragma omp barrier
 Explicit barrier (wait for all threads in team)

 #pragma omp atomic
expr-statement

 Guarantee that specified storage location is updated atomically
 …

2010-05-03 10Computer Systems Lab



OpenMP Worksharing Constructs

 Loops can be automatically parallelized (data parallelism)

 Data reduction: Data from different threads can be merged
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#pragma omp parallel
#pragma omp for shared(A, row, col)
for (i = k+1; i<SIZE; ++i) {
for (j = k+1; j<SIZE; ++j) {
A[i][j] = A[i][j] - row[i] * col[j];

}
}

sum = 0;
#pragma omp parallel for reduction(+: sum)
for (i = 0; i<NUM_STEPS; ++i) {
x = 2.0 * (double)i / (double)(NUM_STEPS);
sum += x * x / NUM_STEPS;

}



OpenMP Worksharing Constructs

 sections and section
 Each section is executed by a different thread (functional parallelism)

 single
 Serialize a section of code, only one thread executes code block 

(good for I/O)
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#pragma omp parallel sections num_threads(2)
{
#pragma omp section
{ /* thread-1 */ }
#pragma omp section
{ /* thread-2 */ }

}



OpenMP Synchronization Constructs

 critical
 Defines a critical section (only one thread at a time)
 All critical constructs without a name are considered to have the 

same unspecified name

 barrier
 A thread reaching a barrier must wait all the other threads of the 

team
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#pragma omp critical
{
/* critical section */

}

#pragma omp barrier



OpenMP Synchronization Constructs

 ordered
 Execute the block in the order it would be executed in a sequential 

execution of the loop
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#pragma omp parallel for
for (i = 0; i < 1000; i++) {
for (j = 0; j < 1000; j++)
res = foo();

#pragma omp ordered
{
if (i<5)
printf("%i: %i\n", i, res);

}
}



Schedule Types for Loop Constructs

 schedule(static[,chunk])
 Threads get a chunk of data to iterate over
 Chunks are assigned in round-robin fashion

 schedule(dynamic[,chunk])
 Each thread executes a chunk of iterations, then requests another chunk until no 

chunks remain
 schedule(guided[,chunk])

 Each thread executes a chunk of iterations, then requests another chunk until no 
chunks remain

 Chunk sizes start large and then decrease to specified chunk size as the 
computation progresses

 auto
 Leave decision to compiler and/or runtime system

 schedule(runtime)
 Use the schedule defined at runtime by the OMP_SCHEDULE environment variable
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Data Sharing Attribute Clauses

 These apply only to variables visible in construct
 default(shared|none)

 Controls the default data-sharing attributes
 shared(list) / private(list)

 Variables in list are shared / private
 firstprivate(list)

 Variables in list are private to each thread
 Variables are initialized to value of corresponding original items

 lastprivate(list)
 Variables in list are private to each thread
 Corresponding original items will be updated after the end of region

 reduction(operator:list)
 Accumulate into list items using indicated associative operator

 ...
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gcc

Compile and link with:
gcc -fopenmp -lgomp

 The number of threads is determined by the runtime 
environment or can be set with the OMP_NUM_THREADS
environment variable
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