
Computer Systems Lab

Stefan M. Freudenberger
Computer Systems, ETH Zürich

OpenMP

Open Multi-Processing
 API supporting multiplatform shared memory multiprocessing
 (Unix and Windows)
 Set of: compiler directives, libraries and environment variables
 Parallel code sections are executed in parallel using several threads

and are managed by the runtime environment

Implementations
 Visual C++ 2005
 Intel compilers
 Sun Studio
 GCC 4.2 (or GCC 4.1 on some RH platforms)

2010-05-03 2Computer Systems Lab

OpenMP

 Advantages
 Simple: need not deal with message passing
 Automatic data layout and decomposition
 Incremental parallelism
 Unified code for both serial and parallel applications

 Disadvantages
 Only runs efficiently in shared-memory multiprocessor platforms
 Requires a compiler that supports OpenMP
 Scalability is limited by memory architecture
 Synchronization between a subset of threads is not allowed

2010-05-03 3Computer Systems Lab

Parallelism in OpenMP

2010-05-03 4Computer Systems Lab

jo
in

jo
in

End of
Parallel Region

Start of
Parallel Region

Sequential
Region

OpenMP Components

 Compiler directives
 Creating teams of threads
 Sharing the work among threads
 Synchronizing the threads

 Library routines
 To set and query thread attributes

 Environment variables
 To control run-time behavior of the parallel program

2010-05-03 5Computer Systems Lab

OpenMP Directives

 C / C++ Syntax
 OpenMP directives are expressed using pragmas:

 Applies to the succeeding structured block or OpenMP construct
 Can be single statement or compound statement
 Must have single entry at top, single exit at bottom

 Also structured comments for FORTRAN

#ifdef _OPENMP

#pragma omp directive [clause[[,]clause...]] new-line

#endif

2010-05-03 6Computer Systems Lab

Parallelism in OpenMP

 The parallel construct forms a team of threads in an
OpenMP program and starts parallel execution

 A team of threads is created at run time for the parallel region
 The work is shared among the threads
 A nested parallel region is allowed

 May contain a team of one thread
 Nested parallelism is enabled with

setenv OMP_NESTED TRUE

2010-05-03 7Computer Systems Lab

#pragma omp parallel
{
/* Statement executed by all threads */

} /* Implicit barrier */

Example

2010-05-03 8Computer Systems Lab

double xyz[5000][3];

printf(“entering parallel region\n”);

#pragma omp parallel

{

int tid;

tid = omp_get_thread_num();

compute_edges(tid, xyz);

}

printf(“parallel computation completed\n”);

Master only

Thread Forks

Thread Private
Space

Implicit barrier:
Thread Join

Master only

Shared between
all threads!

OpenMP Directives

 Basic Work Sharing Directives:
 #pragma omp for
 Each thread receives a portion of work to accomplish – data parallelism

 #pragma omp sections
 Each section is executed by a different thread – functional parallelism

 #pragma omp single
 Serialize a section of code, only one thread executes code block

 Need not be master thread
 (e.g., good for I/O)

 Can combine parallel construct with one work sharing
construct:
 #pragma omp parallel for
 #pragma omp parallel sections

2010-05-03 9Computer Systems Lab

OpenMP Directives (cont.)

 #pragma omp master
 Block will be executed by the master thread of the team

 #pragma omp critical [(name)]
 Block will be executed by single thread at a time

 #pragma omp barrier
 Explicit barrier (wait for all threads in team)

 #pragma omp atomic
expr-statement

 Guarantee that specified storage location is updated atomically
 …

2010-05-03 10Computer Systems Lab

OpenMP Worksharing Constructs

 Loops can be automatically parallelized (data parallelism)

 Data reduction: Data from different threads can be merged

2010-05-03 11Computer Systems Lab

#pragma omp parallel
#pragma omp for shared(A, row, col)
for (i = k+1; i<SIZE; ++i) {
for (j = k+1; j<SIZE; ++j) {
A[i][j] = A[i][j] - row[i] * col[j];

}
}

sum = 0;
#pragma omp parallel for reduction(+: sum)
for (i = 0; i<NUM_STEPS; ++i) {
x = 2.0 * (double)i / (double)(NUM_STEPS);
sum += x * x / NUM_STEPS;

}

OpenMP Worksharing Constructs

 sections and section
 Each section is executed by a different thread (functional parallelism)

 single
 Serialize a section of code, only one thread executes code block

(good for I/O)

2010-05-03 12Computer Systems Lab

#pragma omp parallel sections num_threads(2)
{
#pragma omp section
{ /* thread-1 */ }
#pragma omp section
{ /* thread-2 */ }

}

OpenMP Synchronization Constructs

 critical
 Defines a critical section (only one thread at a time)
 All critical constructs without a name are considered to have the

same unspecified name

 barrier
 A thread reaching a barrier must wait all the other threads of the

team

2010-05-03 13Computer Systems Lab

#pragma omp critical
{
/* critical section */

}

#pragma omp barrier

OpenMP Synchronization Constructs

 ordered
 Execute the block in the order it would be executed in a sequential

execution of the loop

2010-05-03 14Computer Systems Lab

#pragma omp parallel for
for (i = 0; i < 1000; i++) {
for (j = 0; j < 1000; j++)
res = foo();

#pragma omp ordered
{
if (i<5)
printf("%i: %i\n", i, res);

}
}

Schedule Types for Loop Constructs

 schedule(static[,chunk])
 Threads get a chunk of data to iterate over
 Chunks are assigned in round-robin fashion

 schedule(dynamic[,chunk])
 Each thread executes a chunk of iterations, then requests another chunk until no

chunks remain
 schedule(guided[,chunk])

 Each thread executes a chunk of iterations, then requests another chunk until no
chunks remain

 Chunk sizes start large and then decrease to specified chunk size as the
computation progresses

 auto
 Leave decision to compiler and/or runtime system

 schedule(runtime)
 Use the schedule defined at runtime by the OMP_SCHEDULE environment variable

2010-05-03 15Computer Systems Lab

Data Sharing Attribute Clauses

 These apply only to variables visible in construct
 default(shared|none)

 Controls the default data-sharing attributes
 shared(list) / private(list)

 Variables in list are shared / private
 firstprivate(list)

 Variables in list are private to each thread
 Variables are initialized to value of corresponding original items

 lastprivate(list)
 Variables in list are private to each thread
 Corresponding original items will be updated after the end of region

 reduction(operator:list)
 Accumulate into list items using indicated associative operator

 ...

2010-05-03 16Computer Systems Lab

gcc

Compile and link with:
gcc -fopenmp -lgomp

 The number of threads is determined by the runtime
environment or can be set with the OMP_NUM_THREADS
environment variable

2010-05-03 17Computer Systems Lab

	Computer Systems Lab
	OpenMP
	OpenMP
	Parallelism in OpenMP
	OpenMP Components
	OpenMP Directives
	Parallelism in OpenMP
	Example
	OpenMP Directives
	OpenMP Directives (cont.)
	OpenMP Worksharing Constructs
	OpenMP Worksharing Constructs
	OpenMP Synchronization Constructs
	OpenMP Synchronization Constructs
	Schedule Types for Loop Constructs
	Data Sharing Attribute Clauses
	gcc

