
Seventh Edition

ABRAHAM SILBERSCHATZ
Yale University

PETER BAER GALVIN
Corporate Technologies, Inc.

GREG GAGNE
Westminster College

WILEY

JOHN WILEY & SONS. INC



EXECUTIVE EDITOR Bill Zobrist

SENIOR PRODUCTION EDITOR Ken Santor

COVER DESIGNER Madelyn Lesure

COVER ILLUSTRATION Susan St. Cyr

TEXT DESIGNER Judy Allan

This book was set in Palatino by the author using LaTeX and printed and bound by
Von Hoffmann, Inc. The cover was printed by Von Hoffmann, Inc.

This book is printed on acid free paper. GO

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center. 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011. fax (201) 748-6008.

To order books or for customer service please, call l(800)-CALL-WILEY (225-5945).

ISBN 0-471-69466-5

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1



To my children, Lemot, Sivan, and Aaron

Avi Silberschatz

To my wife, Carla,
and my children, Given Owen and Maddie

Peter Baer Calvin

In memory of Uncle Sonny,
Robert Jon Heilemcin 1933 — 2004

Greg Gagne





Preface

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This field is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Yet the fundamental concepts remain fairly clear, and it is on these that we base
this book.

We wrote this book as a text for an introductory course in operating systems
at the junior or senior undergraduate level or at the first-year graduate level.
We hope that practitioners will also find it useful. It provides a clear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data structures, computer organization,
and a high-level language, such as C. The hardware topics required for an
understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly C, with some Java, but the reader can still
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. Important theoretical
results are covered, but formal proofs are omitted. The bibliographical notes
contain pointers to research papers in which results were first presented and
proved, as well as references to material for further reading. In place of proofs,
figures and examples are used to suggest why we should expect the result in
question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most innovative operating
systems, including Sun Microsystems' Solaris; Linux; Mach; Microsoft MS-DOS,
Windows NT, Windows 2000, and Windows XP; DEC VMS and TOPS-20; IBM OS/2;
and Apple Mac OS X.

In this text, when we refer to Windows XP as an example operating system,
we are implying both Windows XP and Windows 2000. If a feature exists in
Windows XP that is not available in Windows 2000, we will state this explicitly.

V l l



viii Preface

If a feature exists in Windows 2000 but not in Windows XP, then we wili refer
specifically to Windows 2000.

Organization of This Book

The organization of this text reflects our many years of teaching operating
systems courses. Consideration was also given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2001 for teaching operating systems, published by
the Joint Task Force of the IEEE Computing Society and the Association for
Computing Machinery (ACM).

On the supporting web page for this text, we provide several sample syllabi
that suggest various approaches for using the text in both introductory and
advanced operating systems courses. As a general rule, we encourage readers
to progress sequentially through the chapters, as this strategy provides the
most thorough study of operating systems. However, by using the sample
syllabi, a reader can select a different ordering of chapters (or subsections of
chapters).

Content of This Book

The text is organized in eight major parts:
• Overview. Chapters 1 and 2 explain what operating systems are, what

they do, and how they are designed and constructed. They discuss what the
common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation is motivational and explanatory in nature. We have avoided a
discussion of how things are done internally in these chapters. Therefore,
they are suitable for individual readers or for students in lower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

• Process management. Chapters 3 through 7 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code) and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included under this topic is a discussion of
threads.

• Memory management. Chapters 8 and 9 deal with main memory man-
agement during the execution of a process. To improve both the utilization
of the CPU and the speed of its response to its users, the computer must
keep several processes in memory. There are many different memory-
management schemes, reflecting various approaches to memory man-
agement, and the effectiveness of a particular algorithm depends on the
situation.



Preface ix

Storage management. Chapters 10 through 13 describe how the file system,
mass storage, and I/O are handled in a modern computer system. The
file system provides the mechanism for on-line storage of and access to
both data and programs residing on the disks. These chapters describe
the classic internal algorithms and structures of storage management.
They provide a firm practical understanding of the algorithms used—
the properties, advantages, and disadvantages. Since the I/O devices that
attach to a computer vary widely, the operating system needs to provide
a wide range of functionality to applications to allow them to control all
aspects of the devices. We discuss system I/O in depth, including I/O
system design, interfaces, and internal system structures and functions.
In many ways, I/O devices are also the slowest major components of
the computer. Because they are a performance bottleneck, performance
issues are examined. Matters related to secondary and tertiary storage are
explained as well.

Protection and security. Chapters 14 and 15 discuss the processes in an
operating system that must be protected from one another's activities.
For the purposes of protection and security, we use mechanisms that
ensure that only processes that have gained proper authorization from
the operating system can operate on the files, memory, CPU, and other
resources. Protection is a mechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means of specifying the controls to be imposed,
as well as a means of enforcement. Security protects the information stored
in the system (both data and code), as well as the physical resources of
the computer system, from unauthorized access, malicious destruction or
alteration, and accidental introduction of inconsistency.

Distributed systems. Chapters 16 through 18 deal with a collection of
processors that do not share memory or a clock—a distributed system. By
providing the user with access to the various resources that it maintains, a
distributed system can improve computation speed and data availability
and reliability. Such a system also provides the user with a distributed file
system, which is a file-service system whose users, servers, and storage
devices are dispersed among the sites of a distributed system. A distributed
system must provide various mechanisms for process synchronization and
communication and for dealing with the deadlock problem and a variety
of failures that are not encountered in a centralized system.

Special-purpose systems. Chapters 19 and 20 deal with systems used for
specific purposes, including real-time systems and multimedia systems.
These systems have specific requirements that differ from those of the
general-purpose systems that are the focus of the remainder of the text.
Real-time systems may require not only that computed results be "correct"
but also that the results be produced within a specified deadline period.
Multimedia systems require quality-of-service guarantees ensuring that
the multimedia data are delivered to clients within a specific time frame.

Case studies. Chapters 21 through 23 in the book, and Appendices A
through C on the website, integrate the concepts described in this book by
describing real operating systems. These systems include Linux, Windows



Preface

XP, FreeBSD, Mach, and Windows 2000. We chose Linux and FreeBSD
because UNIX—at one time—was almost small enough to understand
yet was not a "toy" operating system. Most of its internal algorithms were
selected for simplicity, rather than for speed or sophistication. Both Linux
and FreeBSD are readily available to computer-science departments, so
many students have access to these systems. We chose Windows XP and
Windows 2000 because they provide an opportunity for us to study a
modern operating system with a design and implementation drastically
different from those of UNIX. Chapter 23 briefly describes a few other
influential operating systems.

Operating-System Environments

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention is paid
to the Microsoft family of operating systems (including Windows NT, Windows
2000, and Windows XP) and various versions of UNIX (including Solaris, BSD,
and Mac OS X). We also provide a significant amount of coverage of the Linux
operating system reflecting the most recent version of the kernel—Version 2.6
—at the time this book was written.

The text also provides several example programs written in C and
Java. These programs are intended to run in the following programming
environments:

• Windows systems. The primary programming environment for Windows
systems is the Win32 API (application programming interface), which pro-
vides a comprehensive set of functions for managing processes, threads,
memory, and peripheral devices. We provide several C programs illustrat-
ing the use of the Win32 API. Example programs were tested on systems
running Windows 2000 and Windows XP.

• POSIX. POSIX (which stands for Portable Operating System Interface) repre-
sents a set of standards implemented primarily for UNIX-based operating
systems. Although Windows XP and Windows 2000 systems can also run
certain POSIX programs, our coverage of POSIX focuses primarily on UNIX
and Linux systems. POSIX-compliant systems must implement the POSIX
core standard (POSIX.1)—Linux, Solaris, and Mac OS X are examples of
POSIX-compliant systems. POSIX also defines several extensions to the
standards, including real-time extensions (POSlxl.b) and an extension for
a threads library (POSIXl.c, better known as Pthreads). We provide several
programming examples written in C illustrating the POSIX base API, as well
as Pthreads and the extensions for real-time programming. These example
programs were tested on Debian Linux 2.4 and 2.6 systems, Mac OS X, and
Solaris 9 using the gcc 3.3 compiler.

• Java. Java is a widely used programming language with a rich API and
built-in language support for thread creation and management. Java
programs run on any operating system supporting a Java virtual machine
(or JVM). We illustrate various operating system and networking concepts
with several Java programs tested using the Java 1.4 JVM.



Preface xi

We have chosen these three programming environments because it,is our
opinion that they best represent the two most popular models of operating
systems: Windows and UNIX/Linux, along with the widely used Java environ-
ment. Most programming examples are written in C, and we expect readers to
be comfortable with this language; readers familiar with both the C and Java
languages should easily understand most programs provided in this text.

In some instances—such as thread creation—we illustrate a specific
concept using all three programming environments, allowing the reader
to contrast the three different libraries as they address the same task. In
other situations, we may use just one of the APIs to demonstrate a concept.
For example, we illustrate shared memory using just the POSIX API; socket
programming in TCP/IP is highlighted using the Java API.

The Seventh Edition

As we wrote this seventh edition of Operating System Concepts, we were guided
by the many comments and suggestions we received from readers of our
previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten the
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changes in many of
the chapters. Most importantly, we have completely reorganized the overview
material in Chapters 1 and 2 and have added two new chapters on special-
purpose systems (real-time embedded systems and multimedia systems).
Because protection and security have become more prevalent in operating
systems, we now cover these topics earlier in the text. Moreover, we have
substantially updated and expanded the coverage of security.

Below, we provide a brief outline of the major changes to the various
chapters:

• Chapter 1, Introduction, has been totally revised. In previous editions, the
chapter gave a historical view of the development of operating systems.
The new chapter provides a grand tour of the major operating-system
components, along with basic coverage of computer-system organization.

m Chapter 2, Operating-System Structures, is a revised version of old
Chapter 3, with many additions, including enhanced discussions of system
calls and operating-system structure. It also provides significantly updated
coverage of virtual machines.

• Chapter 3, Processes, is the old Chapter 4. It includes new coverage of how
processes are represented in Linux and illustrates process creation using
both the POSIX and Win32 APIs. Coverage of shared memory is enhanced
with a program illustrating the shared-memory API available for POSIX
systems.

• Chapter 4, Threads, is the old Chapter 5. The chapter presents an enhanced
discussion of thread libraries, including the POSIX, Win32 API, and Java
thread libraries. It also provides updated coverage of threading in Linux.



Preface

Chapter 5, CPU Scheduling, is the old Chapter 6. The chapter offers a
significantly updated discussion of scheduling issues for multiprocessor
systems, including processor affinity and load-balancing algorithms. It
also features a new section on thread scheduling, including Pthreads, and
updated coverage of table-driven scheduling in Solaris. The section on
Linux scheduling has been revised to cover the scheduler used in the 2.6
kernel.

Chapter 6, Process Synchronization, is the old Chapter 7. We have
removed the coverage of two-process solutions and now discuss only
Peterson's solution, as the two-process algorithms are not guaranteed to
work on modern processors. The chapter also includes new sections on
synchronization in the Linux kernel and in the Pthreads API.

Chapter 7, Deadlocks, is the old Chapter 8. New coverage includes
a program example illustrating deadlock in a multithreaded Pthread
program.

Chapter 8, Main Memory, is the old Chapter 9. The chapter no longer
covers overlays. In addition, the coverage of segmentation has seen sig-
nificant modification, including an enhanced discussion of segmentation
in Pentium systems and a discussion of how Linux is designed for such
segmented systems.

Chapter 9, Virtual Memory, is the old Chapter 10. The chapter features
expanded coverage of motivating virtual memory as well as coverage
of memory-mapped files, including a programming example illustrating
shared memory (via memory-mapped files) using the Win32 API. The
details of memory management hardware have been modernized. A new
section on allocating memory within the kernel discusses the buddy
algorithm and the slab allocator.

Chapter 10, File-System Interface, is the old Chapter 11. It has been
updated and an example of Windows XP ACLs has been added.

Chapter 11, File-System Implementation, is the old Chapter 12. Additions
include a full description of the WAFL file system and inclusion of Sun's
ZFS file system.

Chapter 12, Mass-Storage Structure, is the old Chapter 14. New is the
coverage of modern storage arrays, including new RAID technology and
features such as thin provisioning.

Chapter 13, I/O Systems, is the old Chapter 13 updated with coverage of
new material.

Chapter 14, Protection, is the old Chapter 18 updated with coverage of the
principle of least privilege.

Chapter 15, Security, is the old Chapter 19. The chapter has undergone
a major overhaul, with all sections updated. A full example of a buffer-
overflow exploit is included, and coverage of threats, encryption, and
security tools has been expanded.

Chapters 16 through 18 are the old Chapters 15 through 17, updated with
coverage of new material.



Preface xiii

• Chapter 19, Real-Time Systems, is a new chapter focusing on realtime
and embedded computing systems, which have requirements different
from those of many traditional systems. The chapter provides an overview
of real-time computer systems and describes how operating systems must
be constructed to meet the stringent timing deadlines of these systems.

• Chapter 20, Multimedia Systems, is a new chapter detailing developments
in the relatively new area of multimedia systems. Multimedia data differ
from conventional data in that multimedia data—such as frames of video
—must be delivered (streamed) according to certain time restrictions. The
chapter explores how these requirements affect the design of operating
systems.

• Chapter 21, The Linux System, is the old Chapter 20, updated to reflect
changes in the 2.6 kernel—the most recent kernel at the time this text was
written.

• Chapter 22, XP, has been updated.

• Chapter 22, Influential Operating Systems, has been updated.

The old Chapter 21 (Windows 2000) has been turned into Appendix C. As in
the previous edition, the appendices are provided online.

Programming Exercises and Projects

To emphasize the concepts presented in the text, we have added several
programming exercises and projects that use the POS1X and Win32 APlsas well
as Java. We have added over 15 new programming exercises that emphasize
processes, threads, shared memory, process synchronization, and networking.
In addition, we have added several programming projects which are more
involved than standard programming exercises. These projects include adding
a system call to the Linux kernel, creating a UNIX shell using the fork () system
call, a multithreaded matrix application, and the producer-consumer problem
using shared memory.

Teaching Supplements and Web Page

The web page for the book contains such material as a set of slides to accompany
the book, model course syllabi, all C and Java source code, and up-to-date
errata. The web page also contains the book's three case-study appendices and
the Distributed Communication appendix. The URL is:

http://www.os-book.com

New to this edition is a print supplement called the Student Solutions
Manual. Included are problems and exercises with solutions not found in
the text that should help students master the concepts presented. You can
purchase a print copy of this supplement at Wiley's website by going to
http://www.wiley.com/college/silberschatz and choosing the Student Solu-
tions Manual link.



Preface

To obtain restricted supplements, such as the solution guide to the exercises
in the text, contact your local John Wiley & Sons sales representative. Note that
these supplements are avaialble only to faculty who use this text. You can
find your representative at the "Find a Rep?" web page: http://www.jsw-
edcv.wiley.com/college/findarep.

Mailing List

We have switched to the mailman system for communication among the users
of Operating System Concepts. If you wish to use this facility, please visit the
following URL and follow the instructions there to subscribe:

http://mailman.cs.yale.edu/mailman/listinfo/os-book-list

The mailman mailing-list system provides many benefits, such as an archive
of postings, as well as several subscription options, including digest and Web
only. To send messages to the list, send e-mail to:

os-book-list@cs.yale.edu

Depending on the message, we will either reply to you personally or forward
the message to everyone on the mailing list. The list is moderated, so you will
receive no inappropriate mail.

Students who are using this book as a text for class should not use the list
to ask for answers to the exercises. They will not be provided.

Suggestions

We have attempted to clean up every error in this new edition, but—as
happens with operating systems—a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify.

If you would like to suggest improvements or to contribute exercises,
we would also be glad to hear from you. Please send correspondence to
os-book@cs.vale.edu.

Acknowledgments

This book is derived from the previous editions, the first three of which were
coauthored by James Peterson. Others who helped us with previous editions
include Hamid Arabnia, Rida Bazzi, Randy Bentson, David Black, Joseph
Boykin, Jeff Brumfield, Gael Buckley, Roy Campbell, P. C. Capon, John Car-
penter, Gil Carrick, Thomas Casavant, Ajoy Kumar Datta, Joe Deck, Sudarshan
K. Dhall, Thomas Doeppner, Caleb Drake, M. Racsit Eskicioglu, Hans Flack,
Robert Fowler, G. Scott Graham, Richard Guy, Max Hailperin, Rebecca Hart-
man, Wayne Hathaway, Christopher Haynes, Bruce Hillyer, Mark Holliday,
Ahmed Kamel, Richard Kieburtz, Carol Kroll, Morty Kwestel, Thomas LeBlanc,
John Leggett, Jerrold Leichter, Ted Leung, Gary Lippman, Carolyn Miller,



Preface xv

Michael Molloy, Yoichi Muraoka, Jim M. Ng, Banu Ozden, Ed Posnak,,Boris
Putanec, Charles Qualline, John Quarterman, Mike Reiter, Gustavo Rodriguez-
Rivera, Carolyn J. C. Schauble, Thomas P. Skinner, Yannis Smaragdakis, Jesse
St. Laurent, John Stankovic, Adam Stauffer, Steven Stepanek, Hal Stern, Louis
Stevens, Pete Thomas, David Umbaugh, Steve Vinoski, Tommy Wagner, Larry
L. Wear, John Werth, James M. Westall, J. S. Weston, and Yang Xiang

Parts of Chapter 12 were derived from a paper by Hillyer and Silberschatz
[1996]. Parts of Chapter 17 were derived from a paper by Levy and Silberschatz
[1990]. Chapter 21 was derived from an unpublished manuscript by Stephen
Tweedie. Chapter 22 was derived from an unpublished manuscript by Dave
Probert, Cliff Martin, and Avi Silberschatz. Appendix C was derived from
an unpublished manuscript by Cliff Martin. Cliff Martin also helped with
updating the UNIX appendix to cover FreeBSD. Mike Shapiro, Bryan Cantrill,
and Jim Mauro answered several Solaris-related questions. Josh Dees and Rob
Reynolds contributed coverage of Microsoft's .NET. The project for designing
and enhancing the UNIX shell interface was contributed by John Trono of St.
Michael's College in Winooski, Vermont.

This edition has many new exercises and accompanying solutions, which
were supplied by Arvind Krishnamurthy.

We thank the following people who reviewed this version of the book: Bart
Childs, Don Heller, Dean Hougen Michael Huangs, Morty Kewstel, Euripides
Montagne, and John Sterling.

Our Acquisitions Editors, Bill Zobrist and Paul Crockett, provided expert
guidance as we prepared this edition. They were assisted by Simon Durkin,
who managed many details of this project smoothly. The Senior Production
Editor was Ken Santor. The cover illustrator was Susan Cyr, and the cover
designer was Madelyn Lesure. Beverly Peavler copy-edited the manuscript
The freelance proofreader was Katrina Avery; the freelance indexer was Rose-
mary Simpson. Marilyn Turnamian helped generate figures and presentation
slides.

Finally, we would like to add some personal notes. Avi is starting a new
chapter in his life, returning to academia and partnering with Valerie. This
combination has given him the peace of mind to focus on the writing of this text.
Pete would like to thank his family, friends, and coworkers for their support
and understanding during the project. Greg would like to acknowledge the
continued interest and support from his family. However, he would like to
single out his friend Peter Ormsby who—no matter how busy his life seems
to be—always first asks, "How's the writing coming along?"

Abraham Silberschatz, New Haven, CT, 2004
Peter Baer Galvin, Burlington, MA, 2004
Greg Gagne, Salt Lake City, UT, 2004





Contents

PART ONE • OVERVIEW

Chapter 1 Introduction
1.1 What Operating Systems Do 3 1.9 Protection and Security 26
1.2 Computer-System Organization 6 1.10 Distributed Systems 28
1.3 Computer-System Architecture 12 1.11 Special-Purpose Systems 29
1.4 Operating-System Structure 15 1.12 Computing Environments 31
1.5 Operating-System Operations 17 1.13 Summary 34
1.6 Process Management 20 Exercises 36
1.7 Memory Management 21 Bibliographical Notes 38
1.8 Storage Management 22

Chapter 2 Operating-System Structures
2.1 Operating-System Services 39 2.7 Operating-System Structure 58
2.2 User Operating-System Interface 41 2.8 Virtual Machines 64
2.3 System Calls 43 2.9 Operating-System Generation 70
2.4 Types of System Calls 47 2.10 System Boot 71
2.5 System Programs 55 2.11 Summary 72
2.6 Operating-System Design and Exercises 73

Implementation 56 Bibliographical Notes 78

PART TWO • PROCESS MANAGEMENT

Chapter 3 Processes
3.1 Process Concept 81 3.6 Communication in Client-
3.2 Process Scheduling 85 Server Systems 108
3.3 Operations on Processes 90 3.7 Summary 115
3.4 Interprocess Communication 96 Exercises 116
3.5 Examples of IPC Systems 102 Bibliographical Notes 125

XVII



xviii Contents

Chapter 4 Threads
4.1 Overview 127
4.2 Multithreading Models
4.3 Thread Libraries 131
4.4 Threading Issues 138

129
4.5 Operating-System Examples
4.6 Summary 146

Exercises 146
Bibliographical Notes 151

143

Chapter 5 CPU Scheduling
5.1 Basic Concepts 153
5.2 Scheduling Criteria 157
5.3 Scheduling Algorithms 158
5.4 Multiple-Processor Scheduling 169
5.5 Thread Scheduling 172

5.6 Operating System Examples
5.7 Algorithm Evaluation 181
5.8 Summary 185

Exercises 186
Bibliographical Notes 189

173

Chapter 6 Process Synchronization
6.7 Monitors 2096.1 Background 191

6.2 The Critical-Section Problem 193
6.3 Peterson's Solution 195
6.4 Synchronization Hardware 197
6.5 Semaphores 200
6.6 Classic Problems of

Synchronization 204

6.8 Synchronization Examples 217
6.9 Atomic Transactions 222

6.10 Summary 230
Exercises 231
Bibliographical Notes 242

Chapter 7 Deadlocks
7.1 System Model 245
7.2 Deadlock Characterization 247
7.3 Methods for Handling Deadlocks
7.4 Deadlock Prevention 253
7.5 Deadlock Avoidance 256

7.6 Deadlock Detection 262
7.7 Recovery From Deadlock

252 7.8 Summary 267
Exercises 268
Bibliographical Notes 271

266

PART THREE MEMORY MANAGEMENT

Chapter 8 Main Memory
8.1 Background 275
8.2 Swapping 282
8.3 Contiguous Memory Allocation 284
8.4 Paging 288
8.5 Structure of the Page Table 297

8.6 Segmentation 302
8.7 Example: The Intel Pentium
8.8 Summary 309

Exercises 310
Bibliographical Notes 312

305



Contents

Chapter 9 Virtual Memory .
9.1 Background 315 9.8 Allocating Kernel Memory 353
9.2 Demand Paging 319 9.9 Other Considerations 357
9.3 Copy-on-Write 325 9.10 Operating-System Examples 363
9.4 Page Replacement 327 9.11 Summary 365
9.5 Allocation of Frames 340 Exercises 366
9.6 Thrashing 343 Bibliographical Notes 370
9.7 Memory-Mapped Files 348

PART FOUR • STORAGE MANAGEMENT
Chapter 10 File-System Interface
10.1 File Concept 373 10.6 Protection 402
10.2 Access Methods 382 10.7 Summary 407
10.3 Directory Structure 385 Exercises 408
10.4 File-System Mounting 395 Bibliographical Notes 409
10.5 File Sharing 397

Chapter 11 File-System Implementation
11.1 File-System Structure 411 11.8 Log-Structured File Systems 437
11.2 File-System Implementation 413 11.9 NFS 438
11.3 Directory Implementation 419 11.10 Example: The WAFL File System 444
11.4 Allocation Methods 421 11.11 Summary 446
11.5 Free-Space Management 429 Exercises 447
11.6 Efficiency and Performance 431 Bibliographical Notes 449
11.7 Recovery 435

Chapter 12 Mass-Storage Structure
12.1 Overview of Mass-Storage 12.7 RAID Structure 468

Structure 451 12.8 Stable-Storage Implementation 477
12.2 Disk Structure 454 12.9 Tertiary-Storage Structure 478
12.3 Disk Attachment 455 12.10 Summary 488
12.4 Disk Scheduling 456 Exercises 489
12.5 Disk Management 462 Bibliographical Notes 493
12.6 Swap-Space Management 466

Chapter 13 I/O Systems
13.1 Overview 495 13.6 STREAMS 520
13.2 I/O Hardware 496 13.7 Performance 522
13.3 Application I/O Interface 505 13.8 Summary 525
13.4 Kernel I/O Subsystem 511 Exercises 526
13.5 Transforming I/O Requests to Bibliographical Notes 527

Hardware Operations 518



xx Contents

PART FIVE • PROTECTION AND SECURITY*

Chapter 14 Protection
14.1 Goals of Protection 531 14.7 Revocation of Access Rights 546
14.2 Principles of Protection 532 14.8 Capability-Based Systems 547
14.3 Domain of Protection 533 14.9 Language-Based Protection 550
14.4 Access Matrix 538 14.10 Summary 555
14.5 Implementation of Access Matrix 542 Exercises 556
14.6 Access Control 545 Bibliographical Notes 557

Chapter 15 Security
15.1 The Security Problem 559 15.8 Computer-Security
15.2 Program Threats 563 Classifications 600
15.3 System and Network Threats 571 15.9 An Example: Windows XP 602
15.4 Cryptography as a Security Tool 576 15.10 Summary 604
15.5 User Authentication 587 Exercises 604
15.6 Implementing Security Defenses 592 Bibliographical Notes 606
15.7 Firewalling to Protect Systems and

Networks 599

PART SIX • DISTRIBUTED SYSTEMS

Chapter 16 Distributed System Structures
16.1 Motivation 611 16.7 Robustness 631
16.2 Types of Distributed Operating 16.8 Design Issues 633

Systems 613 16.9 An Example: Networking 636
16.3 Network Structure 617 16.10 Summary 637
16.4 Network Topology 620 Exercises 638
16.5 Communication Structure 622 Bibliographical Notes 640
16.6 Communication Protocols 628

Chapter 17 Distributed File Systems
17.1 Background 641 17.6 An Example: AFS 654
17.2 Naming and Transparency 643 17.7 Summary 659
17.3 Remote File Access 646 Exercises 660
17.4 Stateful Versus Stateless Service 651 Bibliographical Notes 661
17.5 File Replication 652



Contents

Chapter 18 Distributed Coordination
18.1 Event Ordering 663
18.2 Mutual Exclusion 666
18.3 Atomicity 669
18.4 Concurrency Control 672
18.5 Deadlock Handling 676

18.6 Election Algorithms 683
18.7 Reaching Agreement 686
18.8 Summary 688

Exercises 689
Bibliographical Notes 690

PART SEVEN SPECIAL-PURPOSE SYSTEMS

Chapter 19 Real-Time Systems
19.1 Overview 695
19.2 System Characteristics 696
19.3 Features of Real-Time Kernels 698
19.4 Implementing Real-Time Operating

Systems 700

19.5 Real-Time CPU Scheduling 704
19.6 VxWorks5.x 710
19.7 Summary 712

Exercises 713
Bibliographical Notes 713

Multimedia Systems
15

Chapter 20
20.1 What Is Multimedia?
20.2 Compression 718
20.3 Requirements of Multimedia

Kernels 720
20.4 CPU Scheduling 722
20.5 Disk Scheduling 723

20.6 Network Management 725
20.7 An Example: CineBlitz 728
20.8 Summary 730

Exercises 731
Bibliographical Notes 733

PART EIGHT CASE STUDIES

Chapter 21 The Linux System
21.1 Linux History 737
21.2 Design Principles 742
21.3 Kernel Modules 745
21.4 Process Management 748
21.5 Scheduling 751
21.6 Memory Management 756
21.7 FileSvstems 764

21.8 Input and Output 770
21.9 Interprocess Communication

21.10 Network Structure 774
21.11 Security 777
21.12 Summary 779

Exercises 780
Bibliographical Notes 781

773

Chapter 22 Windows XP
22.1 History 783
22.2 Design Principles 785
22.3 System Components 787
22.4 Environmental Subsystems 811
22.5 File System 814

22.6 Networking 822
22.7 Programmer Interface 829
22.8 Summary 836

Exercises 836
Bibliographical Notes 837



Contents

Chapter 23 Influential Operating Systems '
23.1 Early Systems 839 23.7 MULTICS 849
23.2 Atlas 845 23.8 IBM OS/360 850
23.3 XDS-940 846 23.9 Mach 851
23.4 THE 847 23.10 Other Systems 853
23.5 RC4000 848 Exercises 853
23.6 CTSS 849

Appendix A UNIX BSD (contents online)
A.I UNIX History A855 A.7 File System A878
A.2 Design Principles A860 A.8 I /O System A886
A.3 Programmer Interface A862 A.9 Interprocess Communication A889
A.4 User Interface A869 A.10 Summary A894
A.5 Process Management A872 Exercises A895
A.6 Memory Management A876 Bibliographical Notes A896

Appendix B The Mach System (contents online)
B.I History of the Mach System A897 B.7 Programmer Interface A919
B.2 Design Principles A899 B.8 Summary A920
B.3 System Components A900 Exercises A921
B.4 Process Management A903 Bibliographical Notes A922
B.5 Interprocess Communication A909 Credits A923
B.6 Memory Management A914

Appendix C Windows 2000 (contents online)
C.I History A925 C.6 Networking A952
C.2 Design Principles A926 C.7 Programmer Interface A957
C.3 System Components A927 C.8 Summary A964
C.4 Environmental Subsystems A943 Exercises A964
C.5 File System A945 Bibliographical Motes A965

Bibliography 855

Credits 885

Index 887



Index
2PC protocol, see two-phase commit

protocol
lOBaseT Ethernet, 619
16-bit Windows environment, 812
32-bit Windows environment, 812-813
100BaseT Ethernet, 619

aborted transactions, 222
absolute code, 278
absolute path names, 390
abstract data type, 375
access:

anonymous, 398
controlled, 402-403
file, sec file access

access control, in Linux, 778-779
access-control list (ACL), 403
access latency, 484
access lists (NFS V4), 656
access matrix, 538-542

and access control, 545-546
defined, 538
implementation of, 542-545
and revocation of access rights,

546-547
access rights, 534, 546-547
accounting (operating system service),

41
accreditation, 602
ACL (access-control list), 403
active array (Linux), 752

Active Directory (Windows XP), 828
active list, 685
acyclic graph, 392
acyclic-graph directories, 391-394
adaptive mutex, 218-219
additional-reference-bits algorithm, 336
additional sense code, 515
additional sense-code qualifier, 515
address(es):

defined, 501
Internet, 623
linear, 306
logical, 279
physical, 279
virtual 279

address binding, 278-279
address resolution protocol (ARP), 636
address space:

logical vs. physical, 279-280
virtual, 317, 760-761

address-space identifiers (ASIDs),
293-294

administrative complexity, 645
admission control, 721, 729
admission-control algorithms, 704
advanced encryption standard (AES),

579
advanced technology attachment (ATA)

buses, 453
advisory file-locking mechanisms, 379
AES (advanced encryption standard),

579
affinity, processor, 170

887



888 Index

aging, 163-164, 636
allocation:

buddy-system, 354-355
of disk space, 421-429

contiguous allocation, 421-423
indexed allocation, 425^427
linked allocation, 423^125
and performance, 427-429

equal, 341
as problem, 384
proportional, 341
slab, 355-356

analytic evaluation, 181
Andrew file system (AFS), 653-659

file operations in, 657-658
implementation of, 658-659
shared name space in, 656-657

anomaly detection, 595
anonymous access, 398
anonymous memory, 467
APCs, see asynchronous procedure calls
API, see application program interface
Apple Computers, 42
AppleTalk protocol, 824
Application Domain, 69
application interface (I/O systems),

505-511
block and character devices, 507-508
blocking and nonblocking I/O,

510-511
clocks and timers, 509-510
network devices, 508-509

application layer, 629
application programs, 4

disinfection of, 596-597
multistep processing of, 278, 279
processes vs., 21
system utilities, 55-56

application program interface (API),
44-46

application proxy firewalls, 600
arbitrated loop (FC-AL), 455
architecture(s), 12-15

clustered systems, 14-15
multiprocessor systems, 12-13
single-processor systems, 12-14
of Windows XP, 787-788

architecture state, 171
archived to tape, 480

areal density, 492
argument vector, 749
armored viruses, 571
ARP (address resolution protocol), 636
arrays, 316
ASIDs, see address-space identifiers
assignment edge, 249
asymmetric clustering, 15
asymmetric encryption, 580
asymmetric multiprocessing, 13, 169
asynchronous devices, 506, 507
asynchronous (nonblocking) message

passing, 102
asynchronous procedure calls (APCs),

140-141, 790-791
asynchronous thread cancellation, 139
asynchronous writes, 434
ATA buses, 453
Atlas operating system, 845-846
atomicity, 669-672
atomic transactions, 198, 222-230

and checkpoints, 224-225
concurrent, 225-230

and locking protocols,
227-228

and serializability, 225-227
and timestamp-based

protocols, 228-230
system model for, 222-223
write-ahead logging of, 223-224

attacks, 560. See also denial-of-service
attacks
man-in-the-middle, 561
replay, 560
zero-day, 595

attributes, 815
authentication:

breaching of, 560
and encryption, 580-583
in Linux, 777
two-factor, 591
in Windows, 814

automatic job sequencing, 841
automatic variables, 566
automatic work-set trimming (Windows

XP), 363
automount feature, 645
autoprobes, 747
auxiliary rights (Hydra), 548



Index 889

back door, 50/
background processes, 166
backing store, 282
backups, 436
bad blocks, 464-465
bandwidth:

disk, 457
effective, 484
sustained, 484

banker's algorithm, 259-262
base file record, 815
base register, 276, 277
basic file systems, 412
batch files, 379
batch interface, 41
Bayes' theorem, 596
Belady's anomaly, 332
best-fit strategy, 287
biased protocol, 674
binary semaphore, 201
binding, 278
biometrics, 591-592
bit(s):

mode, 18
modify (dirty), 329
reference, 336
valid-invalid, 295-296

bit-interleaved parity organization,
472

bit-level striping, 470
bit vector (bit map), 429
black-box transformations, 579
blade servers, 14
block(s), 47, 286, 382

bad, 464-465
boot, 71, 463-464
boot control, 414
defined, 772
direct, 427
file-control, 413
index, 426
index to, 384
indirect, 427
logical, 454
volume control, 414

block ciphers, 579
block devices, 506-508, 771-772

block groups, 767
blocking, indefinite, 163
blocking I/O, 510-511
blocking (synchronous) message

passing, 102
block-interleaved distributed parity,

473
block-interleaved parity organization,

472-473
block-level striping, 470
block number, relative, 383-384
boot block, 71, 414, 463^64
boot control block, 414
boot disk (system disk), 72, 464
booting, 71-72, 810-811
boot partition, 464
boot sector, 464
bootstrap programs, 463-464, 573
bootstrap programs (bootstrap loaders),

6, 7, 71
boot viruses, 569
bottom half interrupt service routines,

755
bounded-buffer problem, 205
bounded capacity (of queue), 102
breach of availability, 560
breach of confidentiality, 560
breach of integrity, 560
broadcasting, 636, 725
B+ tree (NTFS), 816
buddy heap (Linux), 757
buddy system (Linux), 757
buddy-system allocation, 354-355
buffer, 772

circular, 438
defined, 512

buffer cache, 433
buffering, 102, 512-514, 729
buffer-overflow attacks, 565-568
bully algorithm, 684-685
bus, 453

defined, 496
expansion, 496
PCI, 496

bus architecture, 11
bus-mastering I/O boards, 503
busy waiting, 202, 499
bytecode, 68
Byzantine generals problem, 686



890 Index

C

cache:
buffer, 433
defined, 514
in Linux, 758
as memory buffer, 277
nonvolatile RAM, 470
page, 433
and performance improvement, 433
and remote file access:

and consistency, 649-650
location of cache, 647-648
update policy, 648, 649

slabs in, 355
unified buffer, 433, 434
in Windows XP, 806-808

cache coherency, 26
cache-consistency problem, 647
cachefs file system, 648
cache management, 24
caching, 24-26, 514

client-side, 827
double, 433
remote service vs., 650-651
write-back, 648

callbacks, 657
Cambridge CAP system, 549-550
cancellation, thread, 139
cancellation points, 139
capability(-ies), 543, 549
capability-based protection systems,

547-550
Cambridge CAP system, 549-550
Hydra, 547-549

capability lists, 543
carrier sense with multiple access

(CSMA), 627-628
cascading termination, 95
CAV (constant angular velocity), 454
CD, see collision detection
central processing unit, see under CPU
certificate authorities, 584
certification, 602
challenging (passwords), 590
change journal (Windows XP), 821
character devices (Linux), 771-773
character-stream devices, 506-508
checkpoints, 225
checksum, 637

child processes, 796 ?

children, 90
CIFS (common internet file system), 399
CineBlitz, 728-730
cipher-block chaining, 579
circuit switching, 626-627
circular buffer, 438
circular SCAN (C-SCAN) scheduling

algorithm, 460
circular-wait condition (deadlocks),

254-256
claim edge, 258
classes (Java), 553
class loader, 68
CLI (command-line interface), 41
C library, 49
client(s):

defined, 642
diskless, 644
in SSL, 586

client interface, 642
client-server model, 398-399
client-side caching (CSC), 827
client systems, 31
clock, logical, 665
clock algorithm, see second-chance page-

replacement algorithm
clocks, 509-510
C-LOOK scheduling algorithm, 461
closeO operation, 376
clusters, 463, 634, 815
clustered page tables, 300
clustered systems, 14-15
clustering, 634

asymmetric, 15
in Windows XP, 363

cluster remapping, 820
cluster server, 655
CLV (constant linear velocity), 454
code:

absolute, 278
reentrant, 296

code books, 591
collisions (of file names), 420
collision detection (CD), 627-628
COM, see component object model
combined scheme index block, 427
command interpreter, 41-42
command-line interface (CLI), 41
commit protocol, 669



Index 891

committed transactions, 222
common internet file system (CIFS), 399
communication(s):

direct, 100
in distributed operating systems,

613
indirect, 100
interprocess, see interprocess

communication
systems programs for, 55
unreliable, 686-687

communications (operating system
service), 40

communication links, 99
communication processors, 619
communications sessions, 626
communication system calls, 54-55
compaction, 288, 422
compiler-based enforcement, 550-553
compile time, 278
complexity, administrative, 645
component object model (COM),

825-826
component units, 642
compression:

in multimedia systems, 718-720
in Windows XP, 821

compression ratio, 718
compression units, 821
computation migration, 616
computation speedup, 612
computer environments, 31-34

client-server computing, 32-33
peer-to-peer computing, 33-34
traditional, 31-32
Web-based computing, 34

computer programs, see application
programs

computer system(s):
architecture of:

clustered systems, 14-15
multiprocessor systems, 12-13
single-processor systems,

12-14
distributed systems, 28-29
file-system management in, 22-23
I/O structure in, 10-11
memory management in, 21-22
operating system viewed by, 5
operation of, 6-8

process management in, 20-21
protection in, 26-27
secure, 560
security in, 27
special-purpose systems, 29-31

handheld systems, 30-31
multimedia systems, 30
real-time embedded systems,

29-30
storage in, 8-10
storage management in, 22-26

caching, 24-26
I/O systems, 26
mass-storage management,

23-24
threats to, 571-572

computing, safe, 598
concurrency control, 672-676

with locking protocols, 672-675
with timestamping, 675-676

concurrency-control algorithms, 226
conditional-wait construct, 215
confidentiality, breach of, 560
confinement problem, 541
conflicting operations, 226
conflict phase (of dispatch latency), 703
conflict resolution module (Linux),

747-748
connectionless messages, 626
connectionless (UDP) sockets, 109
connection-oriented (TCP) sockets, 109
conservative timestamp-ordering

scheme, 676
consistency, 649-650
consistency checking, 435^36
consistency semantics, 401
constant angular velocity (CAV), 454
constant linear velocity (CLV), 454
container objects (Windows XP), 603
contention, 627-628
contention scope, 172
context (of process), 89
context switches, 90, 522-523
contiguous disk space allocation,

421-423
contiguous memory allocation, 285
continuous-media data, 716
control cards, 49, 842, 843
control-card interpreter, 842
controlled access, 402-403



892 Index

controller(s), 453, 496-^97
defined, 496
direct-memory-access, 503
disk, 453
host, 453

control programs, 5
control register, 498
convenience, 3
convoy effect, 159
cooperating processes, 96
cooperative scheduling, 156
copy-on-write technique, 325-327
copy semantics, 513
core memory, 846
counting, 431
counting-based page replacement

algorithm, 338
counting semaphore, 201
covert channels, 564
CPU (central processing unit), 4, 275-277
CPU-bound processes, 88-89
CPU burst, 154
CPU clock, 276
CPU-I/O burst cycle, 154-155
CPU scheduler, sec short-term scheduler
CPU scheduling, 17

about, 153-154
algorithms for, 157-169

criteria, 157-158
evaluation of, 181-185
first-come, first-served

scheduling of, 158-159
implementation of, 184-185
multilevel feedback-queue

scheduling of, 168-169
multilevel queue scheduling

of, 166-167
priority scheduling of, 162-164
round-robin scheduling of,

164-166
shortest-job-first scheduling

of, 159-162
dispatcher, role of, 157
and I/O-CPU burst cycle, 154-155
models for, 181-185

deterministic modeling,
181-182

and implementation, 184-185
queueing-netrwork analysis, 183

simulations, 183-184
in multimedia systems, 722-723
multiprocessor scheduling, 169-172

approaches to, 169-170
and load balancing, 170-171
and processor affinity, 170
symmetric multithreading,

171-172
preemptive scheduling, 155-156
in real-time systems, 704-710

earliest-deadline-first
scheduling, 707

proportional share
scheduling, 708

Pthread scheduling, 708-710
rate-monotonic scheduling,

705-707
short-term scheduler, role of, 155

crackers, 560
creation:

of files, 375
process, 90-95

critical sections, 193
critical-section problem, 193-195

Peterson's solution to, 195-197
and semaphores, 200-204

deadlocks, 204
implementation, 202-204
starvation, 204
usage, 201

and synchronization hardware,
197-200

cross-link trust, 828
cryptography, 576-587

and encryption, 577-584
implementation of, 584—585
SSL example of, 585-587

CSC (client-side caching), 827
C-SCAN scheduling algorithm, 460
CSMA, see carrier sense with multiple

access
CTSS operating system, 849
current directory, 390
current-file-position pointer, 375
cycles:

in CineBlitz, 728
CPU-I/O burst, 154-155

cycle stealing, 504
cylinder groups, 767



Index 893

d (page offset), 289
daemon process, 536
daisy chain, 496
data:

multimedia, 30
recovery of, 435-437
thread-specific, 142

database systems, 222
data capability, 549
data-encryption standard (DES), 579
data files, 374
data fork, 381
datagrams, 626
data-in register, 498
data-link layer, 629
data loss, mean time to, 469
data migration, 615-616
data-out register, 498
data section (of process), 82
data striping, 470
DCOM, 826
DDOS attacks, 560
deadline I/O scheduler, 772
deadlock(s), 204, 676-683

avoidance of, 252, 256-262
with banker's algorithm,

259-262
with resource-allocation-graph

algorithm, 258-259
with safe-state algorithm,

256-258
defined, 245
detection of, 262-265, 678-683

algorithm usage, 265
several instances of a

resource type, 263-265
single instance of each

resource type, 262-263
methods for handling, 252-253
with mutex locks, 247-248
necessary conditions for, 247-249
prevention/avoidance of, 676-678
prevention of, 252-256

and circular-wait condition,
254-256

and hold-and-wait condition,
253-254

and mutual-exclusion t

condition, 253
and no-preemption condition,

254
recovery from, 266-267

by process termination, 266
by resource preemption, 267

system model for, 245-247
system resource-allocation graphs

for describing, 249-251
deadlock-detection coordinator, 679
debuggers, 47, 48
dedicated devices, 506, 507
default signal handlers, 140
deferred procedure calls (DPCs), 791
deferred thread cancellation, 139
degree of multiprogramming, 88
delay, 721
delay-write policy, 648
delegation (NFS V4), 653
deletion, file, 375
demand paging, 319-325

basic mechanism, 320-322
defined, 319
with inverted page tables, 359-360
and I/O interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure, 360-361
pure, 322
and restarting instructions, 322-323
and TLB reach, 358-359

demand-zero memory, 760
demilitarized zone (DMZ), 599
denial-of-service (DOS) attacks, 560,

575-576
density, areal, 492
dentry objects, 419, 765
DES (data-encryption standard), 579
design of operating systems:

distributed operating systems,
633-636

goals, 56
Linux, 742-744
mechanisms and policies, 56-57
Windows XP, 785-787

desktop, 42
deterministic modeling, 181-182



894 Index

development kernels (Linux), 739
device controllers, 6, 518. See also I/O

systems
device directory, 386. See also directories
device drivers, 10, 11, 412, 496, 518, 842
device-management system calls, 53
device queues, 86-87
device reservation, 514-515
DFS, see distributed file system
digital certificates, 583-584
digital signatures, 582
digital-signature algorithm, 582
dining-philosophers problem, 207-209,

212-214
direct access (files), 383-384
direct blocks, 427
direct communication, 100
direct I/O, 508
direct memory access (DMA), 11, 503-504
direct-memory-access (DMA) controller,

503
directories, 385-387

acyclic-graph, 391-394
general graph, 394-395
implementation of, 419—420
recovery of, 435-437
single-level, 387
tree-structured, 389-391
two-level, 388-389

directory objects (Windows XP), 794
direct virtual memory access (DVMA),

504
dirty bits (modify bits), 329
disinfection, program, 596-597
disk(s), 451^153. See also mass-storage

structure
allocation of space on, 421-429

contiguous allocation, 421-423
indexed allocation, 425-427
linked allocation, 423-425
and performance, 427^29

bad blocks, 464-46
boot, 72, 464
boot block, 463-464
efficient use of, 431
electronic, 10
floppy, 452-453
formatting, 462-463
free-space management for, 429^31
host-attached, 455

low-level formatted, 454 »
magnetic, 9
magneto-optic, 479
network-attached, 455—456
performance improvement for,

432-435
phase-change, 479
raw, 339
read-only, 480
read-write, 479
removable, 478-480
scheduling algorithms, 456^62

C-SCAN, 460
FCFS, 457-458
LOOK, 460^61
SCAN, 459-460
selecting, 461-462
SSTF, 458-459

solid-state, 24
storage-area network, 456
structure of, 454
system, 464
WORM, 479

disk arm, 452
disk controller, 453
diskless clients, 644
disk mirroring, 820
disk scheduling:

CineBlitz, 728
in multimedia systems, 723-724

disk striping, 818
dispatched process, 87
dispatcher, 157
dispatcher objects, 220

Windows XP, 790
in Windows XP, 793

dispatch latency, 157, 703
distributed coordination:

and atomicity, 669-672
and concurrency control, 672-676
and deadlocks, 676-683

detection, 678-683
prevention/avoidance,

676-678
election algorithms for, 683-686
and event ordering, 663-666
and mutual exclusion, 666-668
reaching algorithms for, 686-688

distributed denial-of-service (DDOS)
attacks, 560



Index 895

distributed file system (DFS), 398
stateless, 401
Windows XP, 827

distributed file systems (DFSs), 641-642
AFS example of, 653-659

file operations, 657-658
implementation, 658-659
shared name space, 656—657

defined, 641
naming in, 643-646
remote file access in, 646-651

basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648,

649
and caching vs. remote

service, 650-651
and consistency, 649-650

replication of files in, 652-653
stateful vs. stateless service in,

651-652
distributed information systems

(distributed naming services),
399

distributed lock manager (DLM), 15
distributed naming services, see

distributed information systems
distributed operating systems, 615-617
distributed-processing mechanisms,

824-826
distributed systems, 28-29

benefits of, 611-613
defined, 611
distributed operating systems as,

615-617
network operating systems as,

613-615
DLLs, see dynamic link libraries
DLM (distributed lock manager), 15
DMA, see direct memory access
DMA controller, see direct-memory-

access controller
DMZ (demilitarized zone), 599
domains, 400, 827-828
domain-name system (DNS), 399, 623
domain switching, 535
domain trees, 827
DOS attacks, see denial-of-service attacks
double buffering, 513, 729
double caching, 433

double indirect blocks, 427 f

downsizing, 613
down time, 422
DPCs (deferred procedure calls), 791
DRAM, see dynamic random-access

memory
driver end (STREAM), 520
driver registration module (Linux),

746-747
dual-booted systems, 417
dumpster diving, 562
duplex set, 820
DVMA (direct virtual memory access),

504
dynamic linking, 764
dynamic link libraries (DLLs), 281-282,

787
dynamic loading, 280-281
dynamic priority, 722
dynamic protection, 534
dynamic random-access memory

(DRAM), 8
dynamic routing, 625
dynamic storage-allocation problem,

286, 422

earliest-deadline-first (EDF) scheduling,
707, 723

ease of use, 4, 784
ECC, see error-correcting code
EDF scheduling, see earliest-deadline-

first scheduling
effective access time, 323
effective bandwidth, 484
effective memory-access time, 294
effective UID, 27
efficiency, 3, 431-432
EIDE buses, 453
election, 628
election algorithms, 683-686
electronic disk, 10
elevator algorithm, see SCAN scheduling

algorithm
embedded systems, 696
encapsulation (Java), 555
encoded files, 718
encrypted passwords, 589-590
encrypted viruses, 570



896 Index

encryption, 577-584
asymmetric, 580
authentication, 580-583
key distribution, 583-584
symmetric, 579-580
Windows XP, 821

enhanced integrated drive electronics
(EIDE) buses, 453

entry section, 193
entry set, 218
environmental subsystems, 786-787
environment vector, 749
EPROM (erasable programmable read-

only memory), 71
equal allocation, 341
erasable programmable read-only

memory (EPROM), 71
error(s), 515

hard, 465
soft, 463

error conditions, 316
error-correcting code (ECC), 462, 471
error detection, 40
escalate privileges, 27
escape (operating systems), 507
events, 220
event latency, 702
event objects (Windows XP), 790
event ordering, 663-666
exceptions (with interrupts), 501
exclusive lock mode, 672
exclusive locks, 378
execO system call, 138
executable files, 82, 374
execution of user programs, 762-764
execution time, 278
exit section, 193
expansion bus, 496
expired array (Linux), 752
expired tasks (Linux), 752
exponential average, 161
export list, 441-442
ext2fs, see second extended file system
extended file system, 413, 766
extent (contiguous space), 423
extents, 815
external data representation (XDR),

112
external fragmentation, 287-288, 422

failure:
detection of, 631-633
mean time to, 468
recovery from, 633
during writing of block, 477-478

failure handling (2PC protocol),
670-672

failure modes (directories), 400-401
fair share (Solaris), 176
false negatives, 595
false positives, 595
fast I/O mechanism, 807
FAT (file-allocation table), 425
fault tolerance, 13, 634, 818-821
fault-tolerant systems, 634
FC (fiber channel), 455
FC-AL (arbitrated loop), 455
FCB (file-control block), 413
FC buses, 453
FCFS scheduling algorithm, see first-

come, first-served scheduling
algorithm

fibers, 832
fiber channel (FC), 455
fiber channel (FC) buses, 453
fids (NFS V4), 656
FIFO page replacement algorithm,

331-333
50-percent rule, 287
file(s), 22, 373-374. See also directories

accessing information on, 382-384
direct access, 383-384
sequential access, 382-383

attributes of, 374-375
batch, 379
defined, 374
executable, 82
extensions of, 379-390
internal structure of, 381-382
locking open, 377-379
operations on, 375-377
protecting, 402-407

via file access, 402-406
via passwords/permissions,

406-407
recovery of, 435-437
storage structure for, 385-386



Index 897

file access, 377, 402-406
file-allocation table (FAT), 425
file-control block (FCB), 413
file descriptor, 415
file handle, 415
FileLock (Java), 377
file management, 55
file-management system calls, 53
file mapping, 350
file migration, 643
file modification, 55
file objects, 419, 765
file-organization module, 413
file pointers, 377
file reference, 815
file replication (distributed file systems),

652-654
file-server systems, 31
file session, 401
file sharing, 397-402

and consistency semantics,
401-402

with multiple users, 397-398
with networks, 398-401

and client-server model,
398-399

and distributed information
systems, 399-400

and failure modes, 400-401
file systems, 373, 411-413

basic, 412
creation of, 386
design problems with, 412
distributed, 398, see distributed file

systems
extended, 412
implementation of, 413-419

mounting, 417
partitions, 416-417
virtual systems, 417-419

levels of, 412
Linux, 764-770
log-based transaction-oriented,

437-438
logical, 412
mounting of, 395-397
network, 438-444
remote, 398
WAFL, 444-446

File System Hierarchy Standard f,
document, 740

file-system management, 22-23
file-system manipulation (operating

system service), 40
file transfer, 614-615
file transfer protocol (FTP), 614-615
file viruses, 569
filter drivers, 806
firewalls, 31, 599-600
firewall chains, 776
firewall management, 776
FireWire, 454
firmware, 6, 71
first-come, first-served (FCFS)

scheduling algorithm, 158-159,
457-458

first-fit strategy, 287
fixed-partition scheme, 286
fixed priority (Solaris), 176
fixed routing, 625
floppy disks, 452^153
flow control, 521
flushing, 294
folders, 42
footprint, 697
foreground processes, 166
forests, 827-828
forkO and exec() process model (Linux),

748-750
fork() system call, 138
formatting, 462^163
forwarding, 465
forward-mapped page tables, 298
fragments, packet, 776
fragmentation, 287-288

external, 287-288, 422
internal 287, 382

frame(s), 289, 626, 716
stack, 566-567
victim, 329

frame allocation, 340-343
equal allocation, 341
global vs. local, 342-343
proportional allocation, 341-342

frame-allocation algorithm, 330
frame pointers, 567
free-behind technique, 435
free objects, 356, 758



898 Index

free-space list, 429
free-space management (disks), 429-431

bit vector, 429-430
counting, 431
grouping, 431
linked list, 430^31

front-end processors, 523
FTP, see file transfer protocol
ftp, 398
full backup, 436
fully distributed deadlock-detection

algorithm, 681-683

Gantt chart, 159
garbage collection, 68, 395
gateways, 626
GB (gigabyte), 6
gcc (GNU C compiler), 740
GDT (global descriptor table), 306
general graph directories, 394-395
gigabyte (GB), 6
global descriptor table (GDT), 306
global ordering, 665
global replacement, 342
GNU C compiler (gcc), 740
GNU Portable Threads, 130
graceful degradation, 13
graphs, acyclic, 392
graphical user interfaces (GUIs),

41-43
grappling hook, 573
Green threads, 130
group identifiers, 27
grouping, 431
group policies, 828
group rights (Linux), 778
guest operating systems, 67
GUIs, see graphical user interfaces

H

HAL, see hardware-abstraction layer
handheld computers, 5
handheld systems, 30-31
handles, 793, 796
handling (of signals), 123
handshaking, 498-499, 518

hands-on computer systems, set' ?

interactive computer systems
happened-before relation, 664-666
hard affinity, 170
hard-coding techniques, 100
hard errors, 465
hard links, 394
hard real-time systems, 696, 722
hardware, 4

I/O systems, 496-505
direct memory access,

503-504
interrupts, 499-503
polling, 498-499

for storing page tables, 292-294
synchronization, 197-200

hardware-abstraction layer (HAL), 787,
788

hardware objects, 533
hashed page tables, 300
hash functions, 582
hash tables, 420
hash value (message digest), 582
heaps, 82, 835-836
heavyweight processes, 127
hierarchical paging, 297-300
hierarchical storage management

(HSM), 483
high availability, 14
high performance, 786
hijacking, session, 561
hit ratio, 294, 358
hive, 810
hold-and-wait condition (deadlocks),

253-254
holes, 286
holographic storage, 480
homogeneity, 169
host adapter, 496
host-attached storage, 455
host controller, 453
hot spare disks, 475
hot-standby mode, 15
HSM (hierarchical storage

management), 483
human security, 562
Hydra, 547-549
hyperspace, 797
hyperthreading technology, 171



Index 899

I

IBM OS/360, 850-851
identifiers:

file, 374
group, 27
user, 27

idle threads, 177
IDSs, see intrusion-detection systems
IKE protocol, 585
ILM (information life-cycle

management), 483
immutable shared files, 402
implementation:

of CPU scheduling algorithms,
184-185

of operating systems, 57-58
of real-time operating systems,

700-704
and minimizing latency,

702-704
and preemptive kernels, 701
and priority-based

scheduling, 700-701
of transparent naming techniques,

645-646
of virtual machines, 65-66

incremental backup, 436
indefinite blocking (starvation), 163, 204
independence, location, 643
independent disks, 469
independent processes, 96
index, 384
index block, 426
indexed disk space allocation, 425-427
index root, 816
indirect blocks, 427
indirect communication, 100
information life-cycle management

(ILM), 483
information-maintenance system calls,

53-54
inode objects, 419, 765
input/output, see under I/O
input queue, 278
InServ storage array, 476
instance handles, 831
instruction-execution cycle, 275-276
instruction-execution unit, 811

instruction register, 8 »
integrity, breach of, 560
intellimirror, 828
Intel Pentium processor, 305-308
interactive (hands-on) computer

systems, 16
interface(s):

batch, 41
client, 642
defined, 505
intermachine, 642
Windows XP networking, 822

interlock, I/O, 361-362
intermachine interface, 642
internal fragmentation, 287, 382
international use, 787
Internet address, 623
Internet Protocol (IP), 584-585
interprocess communication (IPC), 96-102

in client-server systems, 108-115
remote method invocation,

114-115
remote procedure calls, 111-113
sockets, 108-111

in Linux, 739, 773-774
Mach example of, 105-106
in message-passing systems, 99-102
POSIX shared-memory example of,

103-104
in shared-memory systems, 97-99
Windows XP example of, 106-108

interrupt(s), 7, 499-503
defined, 499
in Linux, 754-755

interrupt chaining, 501
interrupt-controller hardware, 501
interrupt-dispatch table (Windows XP),

792
interrupt-driven data transfer, 353
interrupt-driven operating systems, 17-18
interrupt latency, 702-703
interrupt priority levels, 501
interrupt-request line, 499
interrupt vector, 8, 284, 501
intruders, 560
intrusion detection, 594-596
intrusion-detection systems (IDSs),

594-595
intrusion-prevention systems (IPSs), 595



900 Index

inverted page tables, 301-302, 359-360
I/O (input/output), 4, 10-11

memory-mapped, 353
overlapped, 843-845
programmed, 353

I/O-bound processes, 88-89
I/O burst, 154
I/O channel, 523, 524
I/O interlock, 361-362
I/O manager, 805-806
I/O operations (operating system

service), 40
I/O ports, 353
I/O request packet (IRP), 805
I/O subsystem(s), 26

kernels in, 6, 511-518
procedures supervised by, 517-518

I/O system(s), 495^96
application interface, 505-511

block and character devices,
507-508

blocking and nonblocking
I/O, 510-511

clocks and timers, 509-510
network devices, 508-509

hardware, 496-505
direct memory access, 503-504
interrupts, 499-503
polling, 498-499

kernels, 511-518
buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
I/O scheduling, 511-512
and I/O subsystems, 517-518
protection, 515-516
spooling and device

reservation, 514-515
Linux, 770-773

block devices, 771-772
character devices, 772-773

STREAMS mechanism, 520-522
and system performance, 522-525
transformation of requests to

hardware operations, 518-520
IP, see Internet Protocol
IPC, see interprocess communication
IPSec, 585
IPSs (intrusion-prevention systems), 595

IRP (I/O request packet), 80c
ISCSI, 456
ISO protocol stack, 630
ISO Reference Model, 585

Java:
file locking in, 377-378
language-based protection in,

553-555
monitors in, 218

Java threads, 134-138
Java Virtual Machine (JVM), 68
JIT compiler, 68
jitter, 721
jobs, processes vs., 82
job objects, 803
job pool, 17
job queues, 85
job scheduler, 88
job scheduling, 17
journaling, 768-769
journaling file systems, see log-based

transaction-oriented file systems
just-in-time (JIT) compiler, 68
JVM (Java Virtual Machine), 68

K

KB (kilobyte), 6
Kerberos, 814
kernel(s), 6, 511-518

buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
I/O scheduling, 511-512
and I/O subsystems, 517-518
Linux, 743, 744
multimedia systems, 720-722
nonpreemptive, 194-195
preemptive, 194-195, 701
protection, 515-516
real-time, 698-700
spooling and device reservation,

514-515
task synchronization (in Linux),

753-755
Windows XP, 788-793, 829



Index 901

kernel extensions, 63
kernel memory allocation, 353-356
kernel mode, 18, 743
kernel modules, 745-748

conflict resolution, 747-748
driver registration, 746-747
management of, 745-746

kernel threads, 129
Kerr effect, 479
keys, 544, 547, 577

private, 580
public, 580

key distribution, 583-584
key ring, 583
keystreams, 580
keystroke logger, 571
kilobyte (KB), 6

language-based protection systems,
550-555
compiler-based enforcement,

550-553
Java, 553-555

LANs, see local-area networks
latency, in real-time systems, 702-704
layers (of network protocols), 584
layered approach (operating system

structure), 59-61
lazy swapper, 319
LCNs (logical cluster numbers), 815
LDAP, see lightweight directory-access

protocol
LDT (local descriptor table), 306
least-frequently used (LFU) page-

replacement algorithm, 338
least privilege, principle of, 532-533
least-recently-used (LRU) page-

replacement algorithm, 334-336
levels, 719
LFU page-replacement algorithm, 338
libraries:

Linux system, 743, 744
shared, 281-282, 318

licenses, software, 235
lightweight directory-access protocol

(LDAP), 400, 828
limit register, 276, 277
linear addresses, 306

linear lists (files), 420
line discipline, 772
link(s):

communication, 99
defined, 392
hard, 394
resolving, 392
symbolic, 794

linked disk space allocation, 423-425
linked lists, 430^131
linked scheme index block, 426^127
linking, dynamic vs. static, 281-282, 764
Linux, 737-780

adding system call to Linux kernel
(project), 74-78

design principles for, 742-744
file systems, 764-770

ext2fs, 766-768
journaling, 768-769
process, 769-770
virtual, 765-766

history of, 737-742
distributions, 740-741
first kernel, 738-740
licensing, 741-742
system description, 740

interprocess communication,
773-774

I/O system, 770-773
block devices, 771-772
character devices, 772-773

kernel modules, 745-748
memory management, 756-764

execution and loading of
user programs,
762-764

physical memory, 756-759
virtual memory, 759-762

network structure, 774-777
on Pentium systems, 307-309
process management, 748-757

fork() and execO process
model, 748-750

processes and threads,
750-751

process representation in, 86
real-time, 711
scheduling, 751-756

kernel synchronization,
753-755



902 Index

Linux {continued)
process, 751-753
symmetric multiprocessing,

755-756
scheduling example, 179-181
security model, 777-779

access control, 778-779
authentication, 777

swap-space management in, 468
synchronization in, 221
threads example, 144-146

Linux distributions, 738, 740-741
Linux kernel, 738-740
Linux system, components of, 738, 743-744
lists, 316
Little's formula, 183
live streaming, 717
load balancers, 34
load balancing, 170-171
loader, 842
loading:

dynamic, 280-281
in Linux, 762-764

load sharing, 169, 612
load time, 278
local-area networks (LANs), 14, 28,

618-619
local descriptor table (LDT), 306
locality model, 344
locality of reference, 322
local name space, 655
local (nonremote) objects, 115
local playback, 716
local procedure calls (LPCs), 786,

804-805
local replacement, 342
local replacement algorithm (priority

replacement algorithm), 344
location, file, 374
location independence, 643
location-independent file identifiers, 646
location transparency, 643
lock(s), 197, 544

advisory, 379
exclusive, 378
in Java API, 377-378
mandatory, 379
mutex, 201, 251-252
reader-writer, 207
shared, 378

locking protocols, 227-228, 672-675 '>
lock-key scheme, 544
lockO operation, 377
log-based transaction-oriented file

systems, 437-438
log-file service, 817
logging, write-ahead, 223-224
logging area, 817
logical address, 279
logical address space, 279-280
logical blocks, 454
logical clock, 665
logical cluster numbers (LCNs), 815
logical file system, 413
logical formatting, 463
logical memory, 17, 317. See also virtual

memory
logical records, 383
logical units, 455
login, network, 399
long-term scheduler (job scheduler), 88
LOOK scheduling algorithm, 460-461
loopback, 111
lossless compression, 718
lossy compression, 718-719
low-level formatted disks, 454
low-level formatting (disks), 462-463
LPCs, see local procedure calls
LRU-approximation page replacement

algorithm, 336-338

M

MAC (message-authentication code), 582
MAC (medium access control) address,

636
Mach operating system, 61, 105-106,

851-853
Macintosh operating system, 381-382
macro viruses, 569
magic number (files), 381
magnetic disk(s), 9, 451-453. See also

disk(s)
magnetic tapes, 453-454, 480
magneto-optic disks, 479
mailboxes, 100
mailbox sets, 106
mailslots, 824
mainframes, 5



Index 903

main memory, 8-9
and address binding, 278-279
contiguous allocation of, 284-285

and fragmentation, 287-288
mapping, 285
methods, 286-287
protection, 285

and dynamic linking, 281-282
and dynamic loading, 280-281
and hardware, 276-278
Intel Pentium example:

with Linux, 307-309
paging, 306-308
segmentation, 305-307

and logical vs. physical address
space, 279-280

paging for management of, 288-302
basic method, 289-292
hardware, 292-295
hashed page tables, 300
hierarchical paging, 297-300
Intel Pentium example,

306-308
inverted page tables, 301-302
protection, 295-296
and shared pages, 296-297

segmentation for management of,
302-305
basic method, 302-304
hardware, 304-305
Intel Pentium example,

305-307
and swapping, 282-284

majority protocol, 673-674
MANs (metropolitan-area networks), 28
mandatory file-locking mechanisms, 379
man-in-the-middle attack, 561
many-to-many multithreading model,

130-131
many-to-one multithreading model,

129-130
marshalling, 825
maskable interrupts, 501
masquerading, 560
mass-storage management, 23-24
mass-storage structure, 451-454

disk attachment:
host-attached, 455
network-attached, 455^456
storage-area network, 456

disk management: ?
bad blocks, 464-46
boot block, 463-464
formatting of disks, 462^163

disk scheduling algorithms,
456-462
C-SCAN, 460
FCFS, 457^158
LOOK, 460^161
SCAN, 459-460
selecting, 461-462
SSTF, 458^59

disk structure, 454
extensions, 476
magnetic disks, 451^453
magnetic tapes, 453-454
RAID structure, 468^77

performance improvement, 470
problems with, 477
RAID levels, 470-476
reliability improvement,

468-470
stable-storage implementation,

477-478
swap-space management, 466-468
tertiary-storage, 478-488

future technology for, 480
magnetic tapes, 480
and operating system

support, 480-483
performance issues with,

484-488
removable disks, 478-480

master book record (MBR), 464
master file directory (MFD), 388
master file table, 414
master key, 547
master secret (SSL), 586
matchmakers, 112
matrix product, 149
MB (megabyte), 6
MBR (master book record), 464
MCP operating system, 853
mean time to data loss, 469
mean time to failure, 468
mean time to repair, 469
mechanisms, 56-57
media players, 727
medium access control (MAC) address,

636



904 Index

medium-term scheduler, 89
megabyte (MB), 6
memory:

anonymous, 467
core, 846
direct memory access, 11
direct virtual memory access, 504
logical, 17, 317
main, see main memory
over-allocation of, 327
physical, 17
secondary, 322
semiconductor, 10
shared, 96, 318
unified virtual memory, 433
virtual, see virtual memory

memory-address register, 279
memory allocation, 286-287
memory management, 21-22

in Linux, 756-764
execution and loading of

user programs, 762-764
physical memory, 756-759
virtual memory, 759-762

in Windows XP, 834-836
heaps, 835-836
memory-mapping files, 835
thread-local storage, 836
virtual memory, 834-835

memory-management unit (MMU),
279-280, 799

memory-mapped files, 798
memory-mapped I/O, 353, 497
memory mapping, 285, 348-353

basic mechanism, 348-350
defined, 348
I/O, memory-mapped, 353
in Linux, 763-764
in Win32 API, 350-353

memory-mapping files, 835
memory protection, 285
memory-resident pages, 320
memory-style error-correcting

organization, 471
MEMS (micro-electronic mechanical

systems), 480
messages:

connectionless, 626
in distributed operating systems, 613

message-authentication code (MAC), 582

message digest (hash value), 582 "
message modification, 560
message passing, 96
message-passing model, 54, 99-102
message queue, 848
message switching, 627
metadata, 400, 816
metafiles, 727
methods (Java), 553
metropolitan-area networks (MANs), 28
MFD (master file directory), 388
MFU page-replacement algorithm, 338
micro-electronic mechanical systems

(MEMS), 480
microkernels, 61-64
Microsoft Interface Definition

Language, 825
Microsoft Windows, see under Windows
migration:

computation, 616
data, 615-616
file, 643
process, 617

minicomputers, 5
minidisks, 386
miniport driver, 806
mirroring, 469
mirror set, 820
MMU, see memory-management unit
mobility, user, 440
mode bit, 18
modify bits (dirty bits), 329
modules, 62-63, 520
monitors, 209-217

dining-philosophers solution using,
212-214

implementation of, using
semaphores, 214-215

resumption of processes within,
215-217

usage of, 210-212
monitor calls, see system calls
monoculture, 571
monotonic, 665
Morris, Robert, 572-574
most-frequently used (MFU) page-

replacement algorithm, 338
mounting, 417
mount points, 395, 821
mount protocol, 440-441



Index 90S

mount table, 417, 518
MPEG files, 719
MS-DOS, 811-812
multicasting, 725
MULTICS operating system, 536-538,

849-850
multilevel feedback-queue scheduling

algorithm, 168-169
multilevel index, 427
multilevel queue scheduling algorithm,

166-167
multimedia, 715-716

operating system issues with, 718
as term, 715-716

multimedia data, 30, 716-717
multimedia systems, 30, 715

characteristics of, 717-718
CineBlitz example, 728-730
compression in, 718-720
CPU scheduling in, 722-723
disk scheduling in, 723-724
kernels in, 720-722
network management in, 725-728

multinational use, 787
multipartite viruses, 571
multiple-coordinator approach

(concurrency control), 673
multiple-partition method, 286
multiple universal-naming-convention

provider (MUP), 826
multiprocessing:

asymmetric, 169
symmetric, 169, 171-172

multiprocessor scheduling, 169-172
approaches to, 169-170
examples of:

Linux, 179-181
Solaris, 173, 175-177
Windows XP, 178-179

and load balancing, 170-171
and processor affinity, 170
symmetric multithreading, 171-172

multiprocessor systems (parallel
systems, tightly coupled systems),
12-13

multiprogramming, 15-17, 88
multitasking, see time sharing
multithreading:

benefits of, 127-129
cancellation, thread, 139

and exed) system call, 138 »•
and forkO system call, 138
models of, 129-131
pools, thread, 141-142
and scheduler activations, 142-143
and signal handling, 139-141
symmetric, 171-172
and thread-specific data, 142

MUP (multiple universal-naming-
convention provider), 826

mutex:
adaptive, 218-219
in Windows XP, 790

mutex locks, 201, 247-248
mutual exclusion, 247, 666-668

centralized approach to, 666
fully-distributed approach to,

666-668
token-passing approach to, 668

mutual-exclusion condition (deadlocks),
253

N

names:
resolution of, 623, 828-829
in Windows XP, 793-794

named pipes, 824
naming, 100-101, 399^100

defined, 643
domain name system, 399
of files, 374
lightweight diretory-access

protocol, 400
and network communication,

622-625
national-language-support (NLS) API,

787
NDIS (network device interface

specification), 822
near-line storage, 480
negotiation, 721
NetBEUI (NetBIOSextended user

interface), 823
NetBIOS (network basic input/output

system), 823, 824
NetBIOSextended user interface

(NetBEUI), 823
.NET Framework, 69



906 Index

network(s). See also local-area networks
(LANs); wide-area networks
(WANs)
communication protocols in,

628-631
communication structure of,

622-628
and connection strategies,

626-627
and contention, 627-628
and naming/name

resolution, 622-625
and packet strategies, 626
and routing strategies,

625-626
defined, 28
design issues with, 633-636
example, 636-637
in Linux, 774r-777
metropolitan-area (MANs), 28
robustness of, 631-633
security in, 562
small-area, 28
threats to, 571-572
topology of, 620-622
types of, 617-618
in Windows XP, 822-829

Active Directory, 828
distributed-processing

mechanisms, 824-826
domains, 827-828
interfaces, 822
name resolution, 828-829
protocols, 822-824
redirectors and servers,

826-827
wireless, 31

network-attached storage, 455-456
network basic input/output system, see

NetBIOS
network computers, 32
network devices, 508-509, 771
network device interface specification

(NDIS), 822
network file systems (NFS), 438-444

mount protocol, 440-441
NFS protocol, 441-442
path-name translation, 442-443
remote operations, 443^44

network information service (NIS), 399

network layer, 629 *
network-layer protocol, 584
network login, 399
network management, in multimedia

systems, 725-728
network operating systems, 28, 613-615
network virtual memory, 647
new state, 83
NFS, see network file systems
NFS protocol, 440-442"
NFS V4, 653
nice value (Linux), 179, 752
NIS (network information service), 399
NLS (national-language-support) API,

787
nonblocking I/O, 510-511
nonblocking (asynchronous) message

passing, 102
noncontainer objects (Windows XP), 603
nonmaskable interrupt, 501
nonpreemptive kernels, 194-195
nonpreemptive scheduling, 156
non-real-time clients, 728
nonremote (local) objects, 115
nonrepudiation, 583
nonresident attributes, 815
nonserial schedule, 226
nonsignaled state, 220
nonvolatile RAM (NVRAM), 10
nonvolatile RAM (NVRAM) cache, 470
nonvolatile storage, 10, 223
no-preemption condition (deadlocks),

254
Novell NetWare protocols, 823
NTFS, 814-816
NVRAM (nonvolatile RAM), 10
NVRAM (nonvolatile RAM) cache, 470

objects:
access lists for, 542-543
in cache, 355
free, 356
hardware vs. software, 533
in Linux, 758
used, 356
in Windows XP, 793-796

object files, 374



Index 907

object linking and embedding (OLE),
825-826

object serialization, 115
object table, 796
object types, 419, 795
off-line compaction of space, 422
OLE, see object linking and embedding
on-demand streaming, 717
one-time pad, 591
one-time passwords, 590-591
one-to-one multithreading model, 130
one-way trust, 828
on-line compaction of space, 422
open-file table, 376
open() operation, 376
operating system(s), 1

defined, 3, 5-6
design goals for, 56
early, 839-845

dedicated computer systems,
839-840

overlapped I/O, 843-845
shared computer systems,

841-843
features of, 3
functioning of, 3-6
guest, 67
implementation of, 57-58
interrupt-driven, 17-18
mechanisms for, 56-57
network, 28
operations of:

modes, 18-20
and timer, 20

policies for, 56-57
real-time, 29-30
as resource allocator, 5
security in, 562
services provided by, 39-41
structure of, 15-17, 58-64

layered approach, 59-61
microkernels, 61-64
modules, 62-63
simple structure, 58-59

system's view of, 5
user interface with, 4-5, 41-43

optimal page replacement algorithm,
332-334

ordering, event, see event ordering
orphan detection and elimination, 652

OS/2 operating system, 783
out-of-band key delivery, 583
over allocation (of memory), 327
overlapped I/O, 843-845
overprovisioning, 720
owner rights (Linux), 778

p (page number), 289
packets, 626, 776
packet switching, 627
packing, 382
pages:

defined, 289
shared, 296-297

page allocator (Linux), 757
page-buffering algorithms, 338-339
page cache, 433, 759
page directory, 799
page-directory entries (PDEs), 799
page-fault-frequency (PFF), 347-348
page-fault rate, 325
page-fault traps, 321
page frames, 799
page-frame database, 801
page number (p), 289
page offset (d), 289
pageout (Solaris), 363-364
pageout policy (Linux), 761
pager (term), 319
page replacement, 327-339. Sec also

frame allocation
and application performance, 339
basic mechanism, 328-331
counting-based page replacement,

338
FIFO page replacement, 331-333
global vs. local, 342
LRU-approximation page

replacement, 336-338
LRU page replacement, 334-336
optimal page replacement,

332-334
and page-buffering algorithms,

338-339
page replacement algorithm, 330
page size, 357-358
page slots, 468



908 Index

page table(s), 289-292, 322, 799
clustered, 300
forward-mapped, 298
hardware for storing, 292-294
hashed, 300
inverted, 301-302, 359-360

page-table base register (PTBR), 293
page-table length register (PTLR), 296
page-table self-map, 797
paging, 288-302

basic method of, 289-292
hardware support for, 292-295
hashed page tables, 300
hierarchical, 297-300
Intel Pentium example, 306-308
inverted, 301-302
in Linux, 761-762
and memory protection, 295-296
priority, 365
and shared pages, 296-297
swapping vs., 466

paging files (Windows XP), 797
paging mechanism (Linux), 761
paired passwords, 590
PAM (pluggable authentication

modules), 777
parallel systems, set' multiprocessor

systems
parcels, 114
parent process, 90, 795-796
partially connected networks, 621-622
partition(s), 286, 386, 416-117

boot, 464
raw, 467
root, 417

partition boot sector, 414
partitioning, disk, 463
passwords, 588-591

encrypted, 589-590
one-time, 590-591
vulnerabilities of, 588-589

path name, 388-389
path names:

absolute, 390
relative, 390

path-name translation, 442-443
PCBs, sec process control blocks
PCI bus, 496
PCS (process-contention scope), 172

PC systems, 3 !

PDAs, see personal digital assistants
PDEs (page-directory entries), 799
peer-to-peer computing, 33-34
penetration test, 592-593
performance:

and allocation of disk space, 427-429
and I/O system, 522-525
with tertiary-storage, 484-488

cost, 485^88
reliability, 485
speed, 484-^85

of Windows XP, 786
performance improvement, 432-435, 470
periods, 720
periodic processes, 720
permissions, 406
per-process open-file table, 414
persistence of vision, 716
personal computer (PC) systems, 3
personal digital assistants (PDAs), 10,

30
personal firewalls, 600
personal identification number (PIN),

591
Peterson's solution, 195-197
PFF, see page-fault-frequency
phase-change disks, 479
phishing, 562
physical address, 279
physical address space, 279-280
physical formatting, 462
physical layer, 628, 629
physical memory, 17, 315-316, 756-759
physical security, 562
PIC (position-independent code), 764
pid (process identifier), 90
PIN (personal identification number),

591
pinning, 807-808
PIO, see programmed I/O
pipe mechanism, 774
platter (disks), 451
plug-and-play and (PnP) managers,

809-810
pluggable authentication modules

(PAM), 777
PnP managers, see plug-and-play and

managers



Index 909

point-to-point tunneling protocol
(PPTP), 823

policy(ies), 56-57
group, 828
security, 592

policy algorithm (Linux), 761
polling, 498^99
polymorphic viruses, 570
pools:

of free pages, 327
thread, 141-142

pop-up browser windows, 564
ports, 353, 496
portability, 787
portals, 32
port driver, 806
port scanning, 575
position-independent code (PIC), 764
positioning time (disks), 452
POSIX, 783, 786

interprocess communication
example, 103-104

in Windows XP, 813-814
possession (of capability), 543
power-of-2 allocator, 354
PPTP (point-to-point tunneling

protocol), 823
P + Q redundancy scheme, 473
preemption points, 701
preemptive kernels, 194-195, 701
preemptive scheduling, 155-156
premaster secret (SSL), 586
prepaging, 357
presentation layer, 629
primary thread, 830
principle of least privilege, 532-533
priority-based scheduling, 700-701
priority-inheritance protocol, 219, 704
priority inversion, 219, 704
priority number, 216
priority paging, 365
priority replacement algorithm, 344
priority scheduling algorithm, 162-164
private keys, 580
privileged instructions, 19
privileged mode, see kernel mode
process(es), 17

background, 166
communication between, see

interprocess communication
components of, 82
context of, 89, 749-750
and context switches, 89-90
cooperating, 96
defined, 81
environment of, 749
faulty, 687-688
foreground, 166
heavyweight, 127
independent, 96
I/O-bound vs. CPU-bound, 88-89
job vs., 82
in Linux, 750-751
multithreaded, see multithreading
operations on, 90-95

creation, 90-95
termination, 95

programs vs., 21, 82, 83
scheduling of, 85-90
single-threaded, 127
state of, 83
as term, 81-82
threads performed by, 84-85
in Windows XP, 830

process-contention scope (PCS), 172
process control blocks (PCBs, task

control blocks), 83-84
process-control system calls, 47-52
process file systems (Linux), 769-770
process identifier (pid), 90
process identity (Linux), 748-749
process management, 20-21

in Linux, 748-757
fork() and exec() process

model, 748-750
processes and threads,

750-751
process manager (Windows XP), 802-804
process migration, 617
process mix, 88-89
process objects (Windows XP), 790
processor affinity, 170
processor sharing, 165
process representation (Linux), 86
process scheduler, 85
process scheduling:

in Linux, 751-753
thread scheduling vs., 153



910 Index

process synchronization:
about, 191-193
and atomic transactions, 222-230

checkpoints, 224-225
concurrent transactions,

225-230
log-based recovery, 223-224
system model, 222-223

bounded-buffer problem, 205
critical-section problem, 193-195

hardware solution to, 197-200
Peterson's solution to,

195-197
dining-philosophers problem,

207-209, 212-214
examples of:

Java, 218
Linux, 221
Pthreads, 221-222
Solaris, 217-219
Windows XP, 220-221

monitors for, 209-217
dining-philosophers solution,

212-214
resumption of processes

within, 215-217
semaphores, implementation

using, 214-215
usage, 210-212

readers-writers problem, 206-207
semaphores for, 200-204

process termination, deadlock recovery
by, 266

production kernels (Linux), 739
profiles, 719
programs, processes vs., 82, 83. See also

application programs
program counters, 21, 82
program execution (operating system

service), 40
program files, 374
program loading and execution, 55
programmable interval timer, 509
programmed I/O (PIO), 353, 503
programming-language support, 55
program threats, 563-571

logic bombs, 565
stack- or buffer overflow attacks,

565-568
trap doors, 564-565

Trojan horses, 563-564 *
viruses, 568-571

progressive download, 716
projects, 176
proportional allocation, 341
proportional share scheduling, 708
protection, 531

access control for, 402-406
access matrix as model of, 538-542

control, access, 545-546
implementation, 542-545

capability-based systems, 547-550
Cambridge CAP system,

549-550
Hydra, 547-549

in computer systems, 26-27
domain of, 533-538

MULTICS example, 536-538
structure, 534-535
UNIX example, 535-536

error handling, 515
file, 374
of file systems, 402-407
goals of, 531-532
I/O, 515-516
language-based systems, 550-555

compiler-based enforcement,
550-553

Java, 553-555
as operating system service, 41
in paged environment, 295-296
permissions, 406
and principle of least privilege,

532-533
retrofitted, 407
and revocation of access rights,

546-547
security vs., 559
static vs. dynamic, 534
from viruses, 596-598

protection domain, 534
protection mask (Linux), 778
protection subsystems (Windows XP),

788
protocols, Windows XP networking,

822-824
PTBR (page-table base register), 293
Pthreads, 132-134

scheduling, 172-174
synchronization in, 221-222



Index 911

Pthread scheduling, 708-710
PTLR (page-table length register), 296
public domain, 741
public keys, 580
pull migration, 170
pure code, 296
pure demand paging, 322
push migration, 170, 644

quantum, 789
queue(s), 85-87

capacity of, 102
input, 278
message, 848
ready, 85, 87, 283

queueing diagram, 87
queueing-network analysis, 183

R

race condition, 193
RAID (redundant arrays of inexpensive

disks), 468-177
levels of, 470-476
performance improvement, 470
problems with, 477
reliability improvement, 468-470
structuring, 469

RAID array, 469
RAID levels, 470-474
RAM (random-access memory), 8
random access, 717
random-access devices, 506, 507, 844
random-access memory (RAM), 8
random-access time (disks), 452
rate-monotonic scheduling algorithm,

705-707
raw disk, 339, 416
raw disk space, 386
raw I/O, 508
raw partitions, 467
RBAC (role-based access control), 545
RC 4000 operating system, 848-849
reaching algorithms, 686-688
read-ahead technique, 435
readers, 206
readers-writers problem, 206-207
reader-writer locks, 207

reading files, 375
read-modify-write cycle, 473
read only devices, 506, 507
read-only disks, 480
read-only memory (ROM), 71, 463-464
read queue, 772
read-write devices, 506, 507
read-write disks, 479
ready queue, 85, 87, 283
ready state, 83
ready thread state (Windows XP), 789
real-addressing mode, 699
real-time class, 177
real-time clients, 728
real-time operating systems, 29-30
real-time range (Linux schedulers), 752
real-time streaming, 716, 726-728
real-time systems, 29-30, 695-696

address translation in, 699-700
characteristics of, 696-698
CPU scheduling in, 704-710
defined, 695
features not needed in, 698-699
footprint of, 697
hard, 696, 722
implementation of, 700-704

and minimizing latency,
702-704

and preemptive kernels, 701
and priority-based

scheduling, 700-701
soft, 696, 722
VxWorks example, 710-712

real-time transport protocol (RTP), 725
real-time value (Linux), 179
reconfiguration, 633
records:

logical, 383
master boot, 464

recovery:
backup and restore, 436^-37
consistency checking, 435—136
from deadlock, 266-267

by process termination, 266
by resource preemption, 267

from failure, 633
of files and directories, 435—137
Windows XP, 816-817

redirectors, 826
redundancy, 469. See also RAID



912 Index

redundant arrays of inexpensive disks,
set' RAID

Reed-Solomon codes, 473
reentrant code (pure code), 296
reference bits, 336
Reference Model, ISO, 585
reference string, 330
register(s), 47

base, 276, 277
limit, 276, 277
memory-address, 279
page-table base, 293
page-table length, 296
for page tables, 292-293
relocation, 280

registry, 55, 810
relative block number, 383-384
relative path names, 390
relative speed, 194
releaseO operation, 377
reliability, 626

of distributed operating systems,
612-613

in multimedia systems, 721
of Windows XP, 785

relocation register, 280
remainder section, 193
remote file access (distributed file

systems), 646-651
basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648, 649
and caching vs. remote service,

650-651
and consistency, 649-650

remote file systems, 398
remote file transfer, 614-615
remote login, 614
remote method invocation (RMI), 114—115
remote operations, 443-444
remote procedure calls (RPCs), 825
remote-service mechanism, 646
removable storage media, 481-483

application interface with, 481-482
disks, 478-480
and file naming, 482-483
and hierarchical storage

management, 483
magnetic disks, 451-453

magnetic tapes, 453-454, 480 ?

rendezvous, 102
repair, mean time to, 469
replay attacks, 560
replication, 475
repositioning (in files), 375
request edge, 249
request manager, 772
resident attributes, 815
resident monitor, 841
resolution:

name, 623
and page size, 358

resolving links, 392
resource allocation (operating system

service), 41
resource-allocation graph algorithm,

258-259
resource allocator, operating system as,

5
resource fork, 381
resource manager, 722
resource preemption, deadlock recovery

by, 267
resource-request algorithm, 260-261
resource reservations, 721-722
resource sharing, 612
resource utilization, 4
response time, 16, 157-158
restart area, 817
restore:

data, 436-437
state, 89

retrofitted protection mechanisms, 407
revocation of access rights, 546-547
rich text format (RTF), 598
rights amplification (Hydra), 548
ring algorithm, 685-686
ring structure, 668
risk assessment, 592-593
RMI, see remote method invocation
roaming profiles, 827
robotic jukebox, 483
robustness, 631-633
roles, 545
role-based access control (RBAC), 545
rolled-back transactions, 223
roll out, roll in, 282
ROM, see read-only memory



Index 913

root partitions, 417
root uid (Linux), 778
rotational latency (disks), 452, 457
round-robin (RR) scheduling algorithm,

164-166
routing:

and network communication,
625-626

in partially connected networks,
621-622

routing protocols, 626
routing table, 625
RPCs (remote procedure calls)
RR scheduling algorithm, see round-

robin scheduling algorithm
RSX operating system, 853
RTF (rich text format), 598
R-timestamp, 229
RTP (real-time transport protocol), 725
running state, 83
running system, 72
running thread state (Windows XP),

789
runqueue data structure, 180, 752
RW (read-write) format, 24

safe computing, 598
safe sequence, 256
safety algorithm, 260
safety-critical systems, 696
sandbox (Tripwire file system), 598
SANs, see storage-area networks
SATA buses, 453
save, state, 89
scalability, 634
SCAN (elevator) scheduling algorithm,

459-460, 724
schedules, 226
scheduler(s), 87-89

long-term, 88
medium-term, 89
short-term, 88

scheduler activation, 142-143
scheduling:

cooperative, 156
CPU, see CPU scheduling

disk scheduling algorithms, ,
456-462
C-SCAN, 460
FCFS, 457-458
LOOK, 460-461
SCAN, 459-460
selecting, 461-462
SSTF, 458-459

earliest-deadline-first, 707
I/O, 511-512
job, 17
in Linux, 751-756

kernel synchronization,
753-755

process, 751-753
symmetric multiprocessing,

755-756
nonpreemptive, 156
preemptive, 155-156
priority-based, 700-701
proportional share, 708
Pthread, 708-710
rate-monotonic, 705-707
thread, 172-173
in Windows XP, 789-790,

831-833
scheduling rules, 832
SCOPE operating system, 853
script kiddies, 568
SCS (system-contention scope), 172
SCSI (small computer-systems

interface), 10
SCSI buses, 453
SCSI initiator, 455
SCSI targets, 455
search path, 389
secondary memory, 322
secondary storage, 9, 411. See also disk(s)
second-chance page-replacement

algorithm (clock algorithm),
336-338

second extended file system (ext2fs),
766-769

section objects, 107
sectors, disk, 452
sector slipping, 465
sector sparing, 465, 820
secure single sign-on, 400
secure systems, 560



914 Index

security. See also file access; program
threats; protection; user
authentication
classifications of, 600-602
in computer systems, 27
and firewalling, 599-600
implementation of, 592-599

and accounting, 599
and auditing, 599
and intrusion detection,

594-596
and logging, 599
and security policy, 592
and virus protection,

596-598
and vulnerability assessment,

592-594
levels of, 562
in Linux, 777-779

access control, 77S-779
authentication, 777

as operating system service, 41
as problem, 559-563
protection vs., 559
and system/network threats,

571-576
denial of service, 575-576
port scanning, 575
worms, 572-575

use of cryptography for, 576-587
and encryption, 577-584
implementation, 584-585
SSL example, 585-587

via user authentication, 587-592
biometrics, 591-592
passwords, 588-591

Windows XP, 817-818
in Windows XP, 602-604, 785

security access tokens (Windows XP),
602

security context (Windows XP), 602-603
security descriptor (Windows XP), 603
security domains, 599
security policy, 592
security reference monitor (SRM),

808-809
security-through-obscurity approach, 594
seeds, 590-591
seek, file, 375
seek time (disks), 452, 457

segmentation, 302-305 *
basic method, 302-304
defined, 303
hardware, 304-305
Intel Pentium example, 305-307

segment base, 304
segment limit, 304
segment tables, 304
semantics:

consistency, 401-402
copy, 513
immutable-shared-files, 402
session, 402

semaphore(s), 200-204
binary, 201
counting, 201
and deadlocks, 204
defined, 200
implementation, 202-204
implementation of monitors using,

214-215
and starvation, 204
usage of, 201
Windows XP, 790

semiconductor memory, 10
sense key, 515
sequential access (files), 382-383
sequential-access devices, 844
sequential devices, 506, 507
serial ATA (SATA) buses, 453
serializability, 225-227
serial schedule, 226
server(s), 5

cluster, 655
defined, 642
in SSL, 586

server-message-block (SMB), 822-823
server subject (Windows XP), 603
services, operating system,
session hijacking, 561
session layer, 629
session object, 798
session semantics, 402
session space, 797
sharable devices, 506, 507
shares, 176
shared files, immutable, 402
shared libraries, 281-282, 318
shared lock, 378
shared lock mode, 672



Index 915

shared memory, 96, 318
shared-memory model, 54, 97-99
shared name space, 655
sharing:

load, 169, 612
and paging, 296-297
resource, 612
time, 16

shells, 41, 121-123
shell script, 379
shortest-job-first (SJF) scheduling

algorithm, 159-162
shortest-remaining-time-first scheduling,

162
shortest-seek-time (SSTF) scheduling

algorithm, 458-459
short-term scheduler (CPU scheduler),

88, 155
shoulder surfing, 588
signals:

Linux, 773
UNIX, 123, 139-141

signaled state, 220
signal handlers, 139-141
signal-safe functions, 123-124
signatures, 595
signature-based detection, 595
simple operating system structure, 58-59
simple subject (Windows XP), 602
simulations, 183-184
single indirect blocks, 427
single-level directories, 387
single-processor systems, 12-14, 153
single-threaded processes, 127
SJF scheduling algorithm, sec shortest-

job-first scheduling algorithm
skeleton, 114
slab allocation, 355-356, 758
Sleeping-Barber Problem, 233
slices, 386
small-area networks, 28
small computer-systems interface, see

under SCSI
SMB, see server-message-block
SMP, see symmetric multiprocessing
sniffing, 588
social engineering, 562
sockets, 108-111
socket interface, 508
SOC strategy, see system-on-chip strategy

soft affinity, 170 >
soft error, 463
soft real-time systems, 696, 722
software capability, 549
software interrupts (traps), 502
software objects, 533
Solaris:

scheduling example, 173, 175-177
swap-space management in, 467
synchronization in, 217-219
virtual memory in, 363-365

Solaris 10 Dynamic Tracing Facility, 52
solid-state disks, 24
sorted queue, 772
source-code viruses, 570
source files, 374
sparseness, 300, 318
special-purpose computer systems,

29-31
handheld systems, 30-31
multimedia systems, 30
real-time embedded systems, 29-30

speed, relative, 194
speed of operations:

for I/O devices, 506, 507
spinlock, 202
spoofed client identification, 398
spoofing, 599
spool, 514
spooling, 514-515, 844-845
spyware, 564
SRM, see security reference monitor
SSL 3.0, 585-587
SSTF scheduling algorithm, see shortest-

seek-time scheduling algorithm
stable storage, 223, 477-478
stack, 47, 82
stack algorithms, 335
stack frame, 566-567
stack inspection, 554
stack-overflow attacks, 565-568
stage (magnetic tape), 480
stalling, 276
standby thread state (Windows XP), 789
starvation, see indefinite blocking
state (of process), 83
stateful file service, 651
state information, 40-401
stateless DFS, 401
stateless file service, 651



916 Index

stateless protocols, 727
state restore, 89
state save, 89
static linking, 281-282, 764
static priority, 722
static protection, 534
status information, 55
status register, 498
stealth viruses, 570
storage. See also mass-storage structure

holographic, 480
nonvolatile, 10, 223
secondary, 9, 411
stable, 223
tertiary, 24
utility, 476
volatile, 10, 223

storage-area networks (SANs), 15, 455,
456

storage array, 469
storage management, 22-26

caching, 24—26
I/O systems, 26
mass-storage management, 23-24

stream ciphers, 579-580
stream head, 520
streaming, 716-717
stream modules, 520
STREAMS mechanism, 520-522
string, reference, 330
stripe set, 818-820
stubs, 114, 281
stub routines, 825
superblock, 414
superblock objects, 419, 765
supervisor mode, see kernel mode
suspended state, 832
sustained bandwidth, 484
swap map, 468
swapper (term), 319
swapping, 17, 89, 282-284, 319

in Linux, 761
paging vs., 466

swap space, 322
swap-space management, 466^168
switch architecture, 11
switching:

circuit, 626-627
domain, 535

message, 627 *
packet, 627

symbolic links, 794
symbolic-link objects, 794
symmetric encryption, 579-580
symmetric mode, 15
symmetric multiprocessing (SMP),

13-14, 169, 171-172, 755-756
synchronization, 101-102. See also

process synchronization
synchronous devices, 506, 507
synchronous message passing, 102
synchronous writes, 434
SYSGEN, see system generation
system boot, 71-72
system calls (monitor calls), 7, 43-55

and API, 44-46
for communication, 54-55
for device management, 53
for file management, 53
functioning of, 43-44
for information maintenance, 53-54
for process control, 47-52

system-call firewalls, 600
system-call interface, 46
system-contention scope (SCS), 172
system device, 810
system disk, see boot disk
system files, 389
system generation (SYSGEN), 70-71
system hive, 810
system libraries (Linux), 743, 744
system mode, see kernel mode
system-on-chip (SOC) strategy, 697, 698
system process (Windows XP), 810
system programs, 55-56
system resource-allocation graph,

249-251
system restore, 810
systems layer, 719
system utilities, 55-56, 743-744
system-wide open-file table, 414

table(s), 316
file-allocation, 425
hash, 420
master file, 414



Index 917

mount, 417, 518
object 796
open-file, 376
page, 322, 799
per-process open-hie, 414
routing, 625
segment, 304
system-wide open-file, 414

tags, 543
tapes, magnetic, 453^54, 480
target thread, 139
tasks:

Linux, 750-751
VxWorks, 710

task control blocks, see process control
blocks

TCB (trusted computer base), 601
TCP/IP, see Transmission Control

Protocol/Internet Protocol
TCP sockets, 109
TDI (transport driver interface), 822
telnet, 614
Tenex operating system, 853
terminal concentrators, 523
terminated state, 83
terminated thread state (Windows XP),

789
termination:

cascading, 95
process, 90-95, 266

tertiary-storage, 478^88
future technology for, 480
and operating system support,

480-483
performance issues with,

484-488
removable disks, 478-480
tapes, 480

tertiary storage devices, 24
text files, 374
text section (of process), 82
theft of service, 560
THE operating system, 846-848
thrashing, 343-348

cause of, 343-345
defined, 343
and page-fault-frequency strategy,

347-348
and working-set model, 345-347

threads. See also multithreading »
cancellation, thread, 139
components of, 127
functions of, 127-129
idle, 177
kernel, 129
in Linux, 144-146, 750-751
pools, thread, 141-142
and process model, 84—85
scheduling of, 172-173
target, 139
user, 129
in Windows XP, 144, 145, 789-790,

830, 832-833
thread libraries, 131-138

about, 131-132
Java threads, 134-138
Pthreads, 132-134
Win32 threads, 134

thread pool, 832
thread scheduling, 153
thread-specific data, 142
threats, 560. See also program threats
throughput, 157, 720
thunking, 812
tightly coupled systems, see

multiprocessor systems
time:

compile, 278
effective access, 323
effective memory-access, 294
execution, 278
of file creation/use, 375
load, 278
response, 16, 157-158
turnaround, 157
waiting, 157

time-out schemes, 632, 686-687
time quantum, 164
timer:

programmable interval, 509
variable, 20

timers, 509-510
timer objects, 790
time sharing (multitasking), 16
timestamp-based protocols, 228-230
timestamping, 675-676
timestamps, 665
TLB, see translation look-aside buffer



918 Index

TLB miss, 293
TLB reach, 358-359
tokens, 628, 668
token passing, 628, 668
top half interrupt service routines, 755
topology, network, 620-622
Torvalds, Linus, 737
trace tapes, 184
tracks, disk, 452
traditional computing, 31-32
transactions, 222. See also atomic

transactions
defined, 768
in Linux, 768-769
in log-structured file systems,

437-138
Transarc DFS, 654
transfer rate (disks), 452, 453
transition thread state (Windows XP), 789
transitive trust, 828
translation coordinator, 669
translation look-aside buffer (TLB), 293,

800
transmission control protocol (TCP), 631
Transmission Control Protocol/Internet

Protocol (TCP/IP), 823
transparency, 633-634, 642, 643
transport driver interface (TDI), 822
transport layer, 629
transport-layer protocol (TCP), 584
traps, 18, 321, 502
trap doors, 564-565
tree-structured directories, 389-391
triple DES, 579
triple indirect blocks, 427
Tripwire file system, 597-598
Trojan horses, 563-564
trusted computer base (TCB), 601
trust relationships, 828
tunneling viruses, 571
turnaround time, 157
turnstiles, 219
two-factor authentication, 591
twofish algorithm, 579
two-level directories, 388-389
two-phase commit (2PC) protocol,

669-672
two-phase locking protocol, 228
two tuple, 303
type safety (Java), 555

U

UDP (user datagram protocol), 631
UDP sockets, 109
UFD (user file directory), 388
UFS (UNIX file system), 413
UI, see user interface
unbounded capacity (of queue), 102
UNC (uniform naming convention),

824
unformatted disk space, 386
unicasting, 725
UNICODE, 787
unified buffer cache, 433, 434
unified virtual memory, 433
uniform naming convention (UNC),

824
universal serial buses (USBs), 453
UNIX file system (UFS), 413
UNIX operating system:

consistency semantics for, 401
domain switching in, 535-536
and Linux, 737
permissions in, 406
shell and history feature (project),

121-125
signals in, 123, 139-141
swapping in, 284

unreliability, 626
unreliable communications, 686-687
upcalls, 143
upcall handler, 143
USBs, see universal serial buses
used objects, 356, 759
users, 4-5, 397-398
user accounts, 602
user authentication, 587-592

with biometrics, 591-592
with passwords, 588-591

user datagram protocol (UDP), 631
user-defined signal handlers, 140
user file directory (UFD), 388
user identifiers (user IDs), 27

effective, 27
for files, 375

user interface (UI), 40-43
user mobility, 440
user mode, 18
user programs (user tasks), 81, 762-763
user rights (Linux), 778



Index 919

user threads, 129
utility storage, 476
utilization, 840

VACB, see virtual address control block
VADs (virtual address descriptors),

802
valid-invalid bit, 295
variable class, 177
variables, automatic, 566
variable timer, 20
VDM, see virtual DOS machine
vector programs, 573
vforkO (virtual memory fork), 327
VFS, see virtual file system
victim frames, 329
views, 798
virtual address, 279
virtual address control block (VACB),

806, 807
virtual address descriptors (VADs), 802
virtual address space, 317, 760-761
virtual DOS machine (VDM), 811-812
virtual file system (VFS), 417-419,

765-766
virtual machines, 64-69

basic idea of, 64
benefits of, 66
implementation of, 65-66
Java Virtual Machine as example

of, 68
VMware as example of, 67

virtual memory, 17, 315-318
and copy-on-write technique,

325-327
demand paging for conserving,

319-325
basic mechanism, 320-322
with inverted page tables,

359-360
and I/O interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure,

360-361
pure demand paging, 322

and restarting instructions,
322-323

and TLB reach, 358-359
direct virtual memory access, 504
and frame allocation, 340-343

equal allocation, 341
global vs. local allocation,

342-343
proportional allocation,

341-342
kernel, 762
and kernel memory allocation,

353-356
in Linux, 759-762
and memory mapping, 348-353

basic mechanism, 348-350
I/O, memory-mapped, 353
in Win32 API, 350-353

network, 647
page replacement for conserving,

327-339
and application performance,

339
basic mechanism, 328-331
counting-based page

replacement, 338
FIFO page replacement,

331-333
LRU-approximation page

replacement, 336-338
LRU page replacement,

334-336
optimal page replacement,

332-334
and page-buffering

algorithms, 338-339
separation of logical memory from

physical memory by, 317
size of, 316
in Solaris, 363-365
and thrashing, 343-348

cause, 343-345
page-fault-frequency strategy,

347-348
working-set model, 345-347

unified, 433
in Windows XP, 363

virtual memory fork, 327
virtual memory (VM) manager, 796-802
virtual memory regions, 760



920 Index

virtual private networks (VPNs), 585,
823

virtual routing, 625
viruses, 568-571, 596-598
virus dropper, 569
VM manager, see virtual memory

manager
VMS operating system, 853
VMware, 67
vnode, 418
vnode number (NFS V4), 656
volatile storage, 10, 223
volumes, 386, 656
volume control block, 414
volume-location database (NFS V4), 656
volume management (Windows XP),

818-821
volume set, 818
volume shadow copies, 821-822
volume table of contents, 386
von Neumann architecture, 8
VPNs, see virtual private networks
vulnerability scans, 592-593
VxWorks, 710-712

W

WAFL file system, 444-446
wait-die scheme, 677-678
waiting state, 83
waiting thread state (Windows XP), 789
waiting time, 157
wait queue, 773
WANs, sec wide-area networks
Web-based computing, 34
web clipping, 31
Web distributed authoring and

versioning (WebDAV), 824
wide-area networks (WANs), 15, 28,

619-620
Win32 API, 350-353, 783-784, 813
Win32 thread library, 134
Windows, swapping in, 284
Windows 2000, 785, 787
Windows NT, 783-784
Windows XP, 783-836

application compatibility of,
785-786

design principles for, 785-787
desktop versions of, 784

environmental subsystems for,1

811-814
16-bit Windows, 812
32-bit Windows, 812-813
logon, 814
MS-DOS, 811-812
POSIX, 813-814
security, 814
Win32,'813

extensibility of, 786-787
file systems, 814-822

change journal, 821
compression and encryption,

821
mount points, 821
NTFS B+ tree, 816
NTFS internal layout, 814-816
NTFS metadata, 816
recovery, 816-817
security, 817-818
volume management and

fault tolerance, 818-821
volume shadow copies,

821-822
history of, 783-785
interprocess communication

example, 106-108
networking, 822-829

Active Directory, 828
distributed-processing

mechanisms, 824-826
domains, 827-828
interfaces, 822
name resolution, 828-829
protocols, 822-824
redirectors and servers,

826-827
performance of, 786
portability of, 787
programmer interface, 829-836

interprocess communication,
833-834

kernel object access, 829
memory management,

834-836
process management,

830-833
sharing objects between

processes, 829-830
reliability of, 785



Part One

Overview
An operating system acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardware must provide appropriate mechanisms to ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. It is important that the goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well delineated portion
of the system, with carefully defined inputs, outputs, and functions.





Introduction

TER

An operating system is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Personal computer (PC) operating systems support complex
games, business applications, and everything in between. Operating systems
for handheld computers are designed to provide an environment in which a
user can easily interface with the computer to execute programs. Thus, some
operating systems are designed to be convenient, others to be efficient, and others
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, I/O, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. In this chapter we
provide a general overview of the major components of an operating system.

CHAPTER OBJECTIVES

• To provide a grand tour of the major operating systems components.

• To provide coverage of basic computer system organization.

1.1 What Operating Systems Do

We begin our discussion by looking at the operating system's role in the
overall computer system. A computer system can be divided roughly into
four components: the hardware, the operating system, the application programs,
and the users (Figure 1.1).



Chapter 1 Introduction

1

|

•

I
user

i 2
i

compiler

user
3

assembler text editor

system and application programs

operating system

computer hardware

i

; user

database
system

Figure 1.1 Abstract view of the components of a computer system.

The hardware—the central processing unit (CPU), the memory, and the
input/output (I/O) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—define the ways in which these resources are
used to solve users' computing problems. The operating system controls and
coordinates the use of the hardware among the various application programs
for the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function by
itself. It simply provides an environment within which other programs can do
useful work.

To understand more fully the operating system's role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user's view of the computer varies according to the interface being
used. Most computer users sit in front of a PC, consisting of a monitor,
keyboard, mouse, and system unit. Such a system is designed for one user
to monopolize its resources. The goal is to maximize the work (or play)
that the user is performing. In this case, the operating system is designed
mostly for ease of use, with some attention paid to performance and none
paid to resource utilization—how various hardware and software resources
are shared. Performance is, of course, important to the user; but rather than
resource utilization, such systems are optimized for the single-user experience.


