
send_replies(struct connection *connp)
{

struct msg *replyp;

while (1) {
replyp = get_q(connp->output_q);
t_snd(connp->fd, replyp->data,

replyp->len, &flags);
}

}
svc_requests(struct connection *connp)
{

struct msg *requestp, *replyp;

while (1) {
requestp = get_q(connp->input_q);
replyp = do_request(requestp);
if (replyp)

put_q(connp->output_q, replyp);
}

}

put_q(struct queue *qp, struct msg *msgp)
{

mutex_enter(&qp->lock);
if (list_empty(qp->list))

cv_signal(&qp->notempty_cond);
add_to_tail(msgp, &qp->list);
mutex_exit(&qp->lock);

}

struct msg *
get_q(struct queue *qp)
{

struct msg *msgp;

mutex_enter(&qp->lock);
while (list_empty(qp->list))

cv_wait(&qp->notempty_cond,
 &qp->lock);

msgp = get_from_head(&qp->list);
mutex_exit(&qp->lock);
return (msgp);

}

main()
{

/* set up server and listen port */
for(;;) {

poll(&fds, nfds, 0);
for (i = 0; i < nfds; i++) {

if (fds[i].revents & POLLIN)
checkfd(fds[i].fd)

}
}

}

checkfd(int fd)
{

struct connection *connp;

if (fd == listenfd) {
/* new connection request */
connp = create_new_connection();
thread_create(NULL, NULL,

svc_requests, connp, 0);
thread_create(NULL, NULL,

send_replies, connp, 0);
} else {

requestp = new_msg();
requestp->len =

t_rcv(fd, requestp->data, BUFSZ,
&flags);

connp = find_connection(fd);
put_q(connp->input_q, requestp);

}
}

Figure 6: Window server
pliant with the similar SVR4 interfaces (derived from [1])
described in [4] and will be made available along with MT-
safe libraries in the future. When POSIX P1003.4a has
completed the standardization process, the POSIX
pthreads interfaces will be made available, in addition.

5: References

[1] M.L. Powell, S.R. Kleiman, S. Barton, D. Shah, D. Stein,
M. Weeks. “SunOS Multi-thread Architecture”, Proceed-

ings of the Winter 1991 USENIX Conference.

[2] POSIX P1003.4a Draft 5, IEEE.
[3] M.B. Jones. “Bringing the C Libraries With Us into a

Multi-Threaded Future”, Proceedings of the Winter 1991
USENIX Conference.

[4] UNIX System Laboratories. “UNIX System V Release 4
ES/MP Multiprocessing Detailed Specifications”.

[5] B. Smaalders, B. Warkentine, K. Clarke. “Prototyping
MT-safe Xt and XView libraries”, Proceedings of the 6th
Annual Conference on the X Window System, 1992.

3.4: RPC server

RPC servers have used various techniques to support
long duration requests. These include forking and having
the child processes handle the reply, relaying long requests
to sub-processes, and RPC callbacks. Threads allow us to
use a much simpler model to handle multiple pending re-
quests. In Figure 5, we can see a simple RPC service that
performs some unspecified task.

The main thread initializes the server and a counting
semaphore, and sits in a poll loop. When a request comes
in a new thread is created to handle it. This takes advantage
of the relatively lightweight cost of thread creation in the
user process. The semaphore is used to prevent a flood of
service requests from creating too great a load on the sys-
tem due to service processing. In the case where all the
threads are already busy the main thread blocks until a ser-
vice thread exits. Note that each service thread handles its
own reads and writes. If a client doesn’t empty the stream
fast enough, the service thread will block on the write call.

3.5: Window system server

A networked window system server tries to handle each
client application as independently as possible. Each appli-
cation should get a fair share of the machine resources, and
any blocking on I/O should affect only the connection that
caused it. This can be done by allocating a bound thread for
each client application. While this would work, it is waste-
ful in that it is rare that more than a small subset of the cli-
ents are active at any one time. Allocating an LWP for each
connection ties up large amounts of kernel resources basi-
cally for waiting. On a busy desktop, this can be several
dozen LWPs.

The code shown in Figure 6 takes a different approach.

It allocates two unbound threads for each client connection,
one to process display requests and one to write out results.
This allows further input to be processed while the results
are being sent, yet it maintains strict serialization within the
connection. A single control thread looks for requests on
the network. The relationship between threads is shown in
Figure 7.

With this arrangement, an LWP is used for the control
thread and for whatever number of threads happen to be ac-
tive concurrently. The threads synchronize via queues.
Each queue has its own mutex to maintain serialization,
and a condition variable to inform waiting threads when
something is placed on the queue.

4: Threads interfaces

The threads library prototype contains the threads inter-
faces described in [1]. These will be converted to be com-

Display

Connection
Figure 7: Window server threads

checkfd(int fd)
{

sema_p(&throttle);
if (islistenfd(fd))

thread_create(NULL, NULL,
create_new_connection, fd, 0);

else
thread_create(NULL, NULL,

service, fd, 0);
}
service(int fd)
{

rpc_msg in, out;

read_msg(fd, &in);
/* handle request and format response*/
write_msg(fd, &out);
sema_v(&throttle);

}

sema_t throttle;

main(int argc, char ** argv)
{

/* set up and register server */
sema_init(&throttle, MAX_BANDWIDTH,
 0, NULL);
while (1) {

poll(&fds, nfds, -1);
for (i = 0; i < nfds; i++)

if (fds[i].revents & POLLIN)
checkfd(fds[i].fd);

}
}

}

Figure 5: RPC Server

do_host(char *host)
{

meter_t meter = init_meter(host);

while (1) {
client =
 get_rstat_clnt(metername(meter));
if (client == NULL) {

meter_down(meter);
/* don’t thrash */
sleep(sleeptime);
continue;

}
while (
 clnt_rstat_call(client,&stat)) {

update_meter(meter, &stat);
sleep(sleeptime);

}
clnt_destroy(client);
meter_down(meter);

}
}

main(int argc, char *argv[])
{

/* initialize gui and # of hosts */
for (i = 0; i < hosts; i++) {

thread_create(NULL, NULL,
 do_host, argv[i+1], 0);

}
run_gui(); /* only returns when done */
exit(0);

}

Figure 4: RPC client
3.2: Matrix multiply

Computationally intensive applications benefit from the
use of all available processors. Matrix multiplication is a
good example of this; see Figure 3.

When the matrix multiply is called, it acquires a mutex
to ensure that only one matrix multiply is in progress. This
relies on mutexes that are statically initialized to zero. The
requesting thread then checks whether its worker threads
have been created. If not, it creates one for each CPU. Once
the worker threads have been created, it sets up a counter of
work to do and then signals the workers via a condition
variable. Each worker picks off a row and column from the
input matrices then updates the counter of work so that the
next worker will get the next item. It then releases the mu-
tex so that computing the vector product can proceed in
parallel. When the results are ready, the worker reacquires
the mutex and updates the counter of work completed. The
worker that completes the last bit of work signals the re-
questing thread.

Note that each iteration computed the results of one en-
try in the result matrix. In some cases this amount of work
is not sufficient to justify the overhead of synchronizing. In
these cases it is better to give each worker more work per
synchronization. For example, each worker could compute
an entire row of the output matrix.

3.3: RPC client

Windowing applications that are also RPC clients have
traditionally had trouble maintaining acceptable levels of
interactivity if communication with the RPC server is slow

or intermittent. By using threads the application can ensure
that the windowing code continues to process user events
and repaint the screen during long duration RPC calls.

A simple example of this application is the multi-host
graphical CPU monitor shown in Figure 4. Here, the main
thread creates as many threads as there are hosts to be mon-
itored. The main routine then runs the window system
event loop until the application terminates. Each host
thread attempts to build a RPC client handle to its host,
flagging the host as down on the display if this fails. Once
a client handle has been successfully created, the thread
performs the RPC call, updates its meter on the screen, and
sleeps until the update period has elapsed. If the RPC call
fails, the host is marked as down, the client handle de-
stroyed, and the thread starts trying to build a new client
handle.

 This example relies on MT-safe RPC client and win-
dow system toolkit libraries. A simple MT-safe RPC li-
brary allows multiple requests on different client handles,
but only allow a single request at a time on the same client
handle. One could also construct an RPC library which
used helper threads that actually wrote the requests and
waited for replies via poll(). This could substantially re-
duce the amount of system resource required since only
one or two LWPs would be required for the I/O threads.

The window system toolkit can use a fairly simple lock-
ing technique since the actual amount of time spent in the
toolkit by any of the host threads is very small. This is dis-
cussed in detail in [5].

struct {
mutex_t lock;
condvar_t start_cond, done_cond;
int (*m1)[SZ][SZ], (*m2)[SZ][SZ],

(*m3)[SZ][SZ];
int row, col;
int todo, notdone, workers;

} work;
mutex_t mul_lock;

matmul(int (*m1)[SZ][SZ], int (*m2)[SZ][SZ],
int (*m3)[SZ][SZ]);

{
int i;

mutex_enter(&mul_lock);
mutex_enter(&work.lock);
if (work.workers == 0) {

for (i = 0; i < NCPU; i++) {
thread_create(NULL, NULL,
 worker, (void *)NULL,
 THREAD_NEW_LWP);

}
work.workers = NCPU;

}
work.m1=m1; work.m2=m2; work.m3=m3;
work.row = work.col = 0;
work.todo = work.notdone = SZ*SZ;
cv_broadcast(&work.start_cond);
while (work.notdone)

cv_wait(&work.done_cond, &work.lock);
mutex_exit(&work.lock);
mutex_exit(&mul_lock);

}

worker()
{

int (*m1)[SZ][SZ], (*m2)[SZ][SZ],
(*m3)[SZ][SZ];

int row, col, i, result;

while (1) {
mutex_enter(&work.lock);
while (work.todo == 0)

cv_wait(&work.start_cond,
 &work.lock);

work.todo--;
m1=work.m1; m2=work.m2; m3=work.m3;
row = work.row; col = work.col;
work.col++;
if (work.col == SZ) {

work.col = 0;
work.row++;
if (work.row == SZ)

work.row = 0;
}
mutex_exit(&work.lock);
result = 0;
for (i = 0; i < SZ; i++)

result +=
 (*m1)[row][i] * (*m2)[i][col];

(*m3)[row][col] = result;
mutex_enter(&work.lock);
work.notdone--;
if (work.notdone == 0)

cv_signal(&work.done_cond);
mutex_exit(&work.lock);

}
}

Figure 3: Matrix multiply
til theFILE is unlocked. This allows the application to con-
trol the locking granularity to suit its needs.

A good discussion of the trade-offs in making libraries
MT-safe can be found in [3].

3: Multithreading examples

The remainder of this paper is several examples of situ-
ations in which threads can be used effectively. The code
shown in the figures is somewhat sketchy due to space lim-
itations and should be taken as an outline. The thread inter-
faces used are described in [1].

3.1: File copy

On either a uniprocessor or a multiprocessor it can be
advantageous to generate several I/O requests at once so
that the I/O access time can be overlapped. A simple exam-
ple of this is file copying. If the input file and the output file
are on different devices the read access for the next block
can be overlapped with the write access for the last block.

Figure 2 shows some of the code.
The main routine creates two threads; one to read the in-

put, one to write the output. Eachthread_create() also
adds an LWP to the pool of LWPs upon which threads can
be scheduled (THREAD_NEW_LWP), since the application
will require full system resources for each thread. This is an
optimization since the library ensures that the threads will
make progress. Note that the LWPs are not permanently
bound to the thread so the threads package can destroy any
that are not utilized.

The reader thread reads from the input and places the
data in a double buffer. The writer thread gets the data from
the buffer and continuously writes it out. The threads syn-
chronize using two counting semaphores; one that counts
the number of buffers emptied by the writer and one that
counts the number of buffers filled by the reader.

The example is somewhat contrived in that normally the
system already asynchronously generates read-ahead re-
quests and write blocks behind when accessing regular
files. The example is still useful if the files to be copied are
raw devices, since raw device access is synchronous.

neously. In some libraries the interfaces cannot work effec-
tively in a multithreaded environment and they must be
changed.

2.1: System interfaces

POSIX P1003.4a [2] has defined reentrant versions of
the POSIX P1003.1 system interfaces. In most cases the in-
terfaces are either completely reentrant or any locking for
shared data can be hidden in the routine implementation. A
good example of the latter ismalloc() . Different threads
can simultaneously entermalloc() and the implementa-
tion provides enough synchronization so that the threads
don’t interfere with each other and each thread returns with
an independent allocation of memory.

In some cases the interface is inherently non-reentrant.
A good example of this iserrno . If one thread makes a
system call which setserrno , then the value inerrno can
be changed by another thread making another system call.
POSIX.4a defineserrno to be uniquely allocated to each
thread, so that threads making simultaneous system calls
don’t interfere with each other.

Another example of this isgetpwnam() . This interface
returns a pointer to a static data area. If a second thread en-
ters getpwnam() before the thread that calledgetp-

wnam() first has completely consumed the entry in the stat-
ic buffer, the entry could be overwritten. One solution is to
put the buffer in a thread specific data area. This allows
threads to callgetpwnam() independently. This approach
has the disadvantage that a data area must be allocated for

each thread that uses the interface.
An alternative approach is to define new, reentrant inter-

faces to these functions. For functions that return pointers
to static data areas, the interface can be changed to have the
caller pass in pointer(s) to the memory in which the results
can be stored. This is the approach taken by POSIX.

For example, POSIX defines a new interface,getp-

wnam_r() , which takes three additional arguments; a
pointer to astruct passwd for the result, a buffer in
which strings pointed to by the returnedstruct passwd

are placed, and the size of the supplied buffer. This ap-
proach keeps the per-thread storage to a minimum and it al-
lows the calling function to manage the required memory
as appropriate.

In the cases where a new interface has been defined, the
old interfaces still remain. They are still usable provided
they are either called from a single thread or the application
provides the appropriate locking before calling any of these
routines.

Some interfaces can be made reentrant, but the overhead
involved in hiding the required locking beneath the inter-
face is too great. An example is thestdio library function
putc() . By default,putc() is implemented with the re-
quired locking of the I/O buffers. However the overhead of
locking and unlocking the I/O buffers for each character
can be too great in some situations. POSIX defines three
new interfaces to help in these situations;flockfile() ,
funlockfile() , andputc_unlocked() . The first two
interfaces serialize multiple access to aFILE . Once the
FILE is locked,putc_unlocked() outputs characters un-

writer()
{

int i = 0;

while (1) {
sema_p(&fullbuf_sem);
if (buf[i].size <= 0)

break;
write(1, buf[i].data, buf[i].size);
sema_v(&emptybuf_sem);
i ^= 1;

}
}

main()
{

thread_id_t treader, twriter;

treader = thread_create(NULL, NULL,
reader, NULL, THREAD_NEW_LWP);

twriter = thread_create(NULL, NULL,
writer, NULL,
THREAD_NEW_LWP | THREAD_WAIT);

thread_wait(twriter);
}

sema_t emptybuf_sem, fullbuf_sem;

/* double buffer */
struct {

char data[BSIZE];
int size;

} buf[2];

reader()
{

int i = 0;

sema_init(&emptybuf_sem, 2, 0, NULL);
while (1) {

sema_p(&emptybuf_sem);
buf[i].size =

read(0, buf[i].data, BSIZE);
sema_v(&fullbuf_sem);
if (buf[i].size <= 0)

break;
i ^= 1;

}
}

Figure 2: File copy

Abstract

SunOS 5.0 is the operating system component of Solaris
2.0. SunOS 5.0 contains the kernel support for multiple
threads of control in a single process address space. This
allows a single application to efficiently overlap I/O oper-
ations and to take advantage of more than one processor,
if available. We describe some of the issues in using and
converting libraries to the multithreaded environment. In
addition, we give several example of different uses of
threads in user applications.

1: SunOS 5.0 MT architecture

SunOS 5.0 is the operating system component of Solaris
2.0. SunOS 5.0 contains the kernel support for multiple
threads of control in a single process address space. In the
SunOS multithread (MT) architecture [1] threads are light-
weight abstractions implemented by a thread library. The
library controls how threads are scheduled onto lightweight
processes (LWPs) which are the independent execution en-
tities within the process and are supported by the kernel.
This allows many hundreds of threads to exist in a process
while the number of LWPs can be tailored to the actual
concurrent need for system resources. The overall architec-
ture is shown in Figure 1.

In many cases, an application need not be aware of the
number of LWPs used as the library creates as many LWPs
as necessary to avoid deadlock due to lack of execution re-
sources. However, this may not be the optimal number for
performance. When required, the size of the pool of LWPs
used to schedule threads can be controlled by the applica-
tion. Threads can also be bound to LWPs when there is
some aspect of an LWP that is required by a thread, such as
system-wide, real-time priority. An analogous situation is
the stdio package whose interfaces provide an efficient,
buffered interface that can be tailored by the application.

 In general, the use of threads by a process is not visible
from outside the process.

1.1: Synchronization

Threads synchronize via a variety of synchronization
primitives, such as:

• Mutual exclusion (mutex) locks
• Condition variables
• Counting semaphores
• Multiple reader, single writer (readers/writer) locks.

The synchronization primitives can be allocated stati-
cally in structures and need only be initialized to zero to
achieve correct default behavior. They can also be used in
a memory-mapped file that is shared between processes.

2: Multithreaded libraries

The general goal of converting existing libraries to a
multithreaded environment is to provide correct operation
when a library interface is entered by more than one thread
simultaneously (i.e. the library is “MT-safe”). In addition,
it is usually desirable that long operations such as I/O not
block other threads from using the library while the opera-
tion completes. In libraries that are not computationaly in-
tensive (most system libraries), it is much less important to
allow many processors to execute library code simulta-

Figure 1: SunOS 5.0 MT architecture

Proc 2Proc 1

User

Kernel

Traditional
process

Proc 3

= LWP = Processor= Thread

Writing Multithreaded Code in Solaris

SunSoft Inc.
Mountain View, California

Steven Kleiman, Bart Smaalders, Dan Stein, Devang Shah

