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Chapter 1

Processes

1.1 Introduction

A process is a portion of executable code that resides in the computers core memory or temporary swap
space. A program is not a process. A program is de�ned as the executable image of one or more processes
stored in a �le.

Each process has a context, which de�nes the state of a process at a certain time. A process context
consists of:

� The executable code for a process (text).

� The memory required to store data for a process (data).

� The stack for the process (stack).

� A process region table, which keeps track of the various pages of virtual memory belonging to the
process.

� The register values of the CPU for the process.

� Other housekeeping information stored in the process table (proctab).

Each process has a unique identi�cation number, call the PID (process identi�cation number). The PID
is often used to index into a processes proctab by the kernel. The PID can also be used for controlling
a process by executing user programs.

1.1.1 Process States

Process states (and contexts) change during the lifetime of an executing process. After a process has
been created, it undergoes state transitions which can be depicted by a State transition Graph (See
Figure 1.1). All processes start their existence in the created state and terminate in the zombie state.

The possible states that a process may be in are:

1. User Running { The process is executing in user mode.

2. Kernel Running { The process is executing a system call.

3. Runnable in Memory { The process is not running but is ready for the kernel to schedule it.

4. Sleeping in Memory { The process is sleeping in memory.
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5. Swapped but Runnable { The process has been temporarily swapped out to disk, but it ready to
execute.

6. Sleeping and Swapped { The process has been moved to a temporary �le and is sleeping.

7. Preempted { The process was returning from kernel mode execution to user mode execution when
the kernel scheduler decided to let a higher priority process execute.

8. Created { The process is newly created but not ready for execution yet.

9. Zombie { The process has terminated but its context has not yet been destroyed.
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Figure 1.1: Process State Transition Diagram

1.2 Manipulating Processes

Process manipulation is performed via system calls to the operating system. Every process maniuplation
system call, with the exception of fork() and wait(), require a PID value to be passed as an argument.
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1.2.1 Process Creation

Process creation under UNIX involves the duplication of an existing process context. One notable
exception to this rule is the init process (PID = 0). The init process is the �rst process to execute
when a UNIX system is booted, and as such there are no other existing processes to duplicate a context
from.

Once a process context has been duplicated, the context can be changed to execute a new program or
to execute a di�erent set of subroutines.

The fork() System Call

To create a new process in UNIX the fork() system call is used. fork() creates a new context based
on the context of the calling process. The fork() call is unusual in that it returns twice: It returns in
both the process calling fork() and in the newly created process.

The synopsis for fork() is as follows:

#include <unistd.h>

pid_t fork(void);

pid_t vfork(void);

If fork() is sucessful, it returns a number of type pid t which is greater than 0 and represents the PID
of the newly created child process. In the child process, fork() returns 0. If fork() fails then its return
value will be less than 0. vfork() is a more e�cient version of fork(), which does not duplicate the
entire parent context. vfork() is suitable for use with exec(), which will be described later.

A trivial example of fork() follows. Here, the parent process prints \Hello" to stdout, and the new
child process prints \World.". Note that the order of printing is not guaranteed. Without some method
of synchronising the processes execution, \Hello" may or may not be printed before \World.".

#include <unistd.h>

#include <stdio.h>

char string1[] = "Hello";

char string2[] = "World.\n";

int main(void)

{

pid_t PID;

PID = fork();

if (PID == 0) /* In the child process? */

printf("%s", string2);

else /* In the parent process */

printf("%s", string1);

exit(0); /* Executed by both processes */

}

The exec() Family of System Calls

Often we wish to spawn a di�erent process as a child of the process that is executing. In order to
accomplish this, we must �rst create a new process using fork() and then replace the image of the child
process with a new process image. The image of a new process is created by the operating system from
an executable binary �le stored on disk.

3



The exec() family of system calls replace the image of the calling process with the image of a di�erent
process stored on disk. The synopsis of the exec() family of system calls follows:

#include <unistd.h>

extern char **environ;

int execl( const char *path, const char *arg, ...);

int execlp( const char *file, const char *arg, ...);

int execle( const char *path, const char *arg , ..., char *const envp[]);

int exect( const char *path, char *const argv[]);

int execv( const char *path, char *const argv[]);

int execvp( const char *file, char *const argv[]);

Refer to the exec manual page for a detailed discription of these functions. We shall only discuss
execlp(). The listing below shows how execlp() is used to execute the UNIX ls program as a child
of the parent process.

#include <unistd.h>

#include <stdio.h>

int main(void)

{

pid_t PID;

PID = vfork();

if (PID == 0) /* In the child process? */

execlp("/bin/ls", ""); /* Execute ls as the child */

wait((int *) 0); /* Wait for the child */

printf("done!\n");

exit(0);

}

When the child process executes execlp() its PID does not change, and the operating system still
recognises the child process as belonging to the parent process. The child process terminates its execution
as soon as ls has �nished executing. Should execlp() (or any other member of the exec() family) fail
to create a new process image then they will return a number less than 0.

The wait() System Call

In the above example for execl(), the wait() system call is being used to force the parent process to
wait until its child process has terminated before it resumes execution. Hence \done!" is always going
to be printed to the terminal after the output of ls has been displayed.

The synopsis for wait() is as follows:

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status)

pid_t waitpid(pid_t pid, int *status, int options);

The wait() system call suspends execution of the current process until a child of that process has
terminated. If the child exits before wait() is executed then wait returns immediately. wait() accepts
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a single call-by-reference argument in which wait() stores the child processes exit value. If the argument
to wait() is 0 then no attempt to return the childs exit status is made.

The waitpid() system call suspends execution of the current process until the child with the speci�ed
PID terminates. This is useful if the current process has spawned multiple children but is only required to
wait on a particular one. Refer to the on-line UNIX wait manual page for further details of waitpid().

1.2.2 Process Priority Control

From a programmers point of view, UNIX processes have priorities that range from -20 (highest priority)
to +19 (lowest priority). The default priority for all user processes is 0. Users can only decrease the
priority of an executing process (unless the priority number of the process is already greater than 0).
Users can not increase the priority of a process if the priority number is 0 (ie: the user is not allowed to
specify a negative priority number). Be carefull not to get confused about priority numbers; the lower

the number the higher the likelyhood that a process will be scheduled.

The root user is capable of specifying negative priority numbers, and hence is able to give processes
higher priorities than users.

The nice UNIX utility is used for specifying the priority of a process. Refer to nice in section 1 of the
on-line manual pages for details of this command.

Programmers should be aware that priorities for processes speci�ed with nice are not the exact priority
numbers used by the UNIX scheduler. Internally, the UNIX kernel calculates the real priority of a process
dynamically, based on how much CPU time the process has already been given (internal priority values
decay over time). Dynamic priority calculation prevents the starvation of lower priority processes. All
things considered, the programmer should view process priorities speci�ed by nice as desired priorities
and not actual priorities. For this reason, standard UNIX processes are not appropriate for many real{
time processing applications.

The nice() System Call

The nice() system call is used to change the priority of the currently executing process. It takes a
single argument inc which is a number between 0 and +19 for user-executed processes and between -20
and +19 for root executed processes. nice() returns 0 if successful and -1 if an error occures.

The synopsis for nice() follows:

#include <unistd.h>

int nice(int inc);

BSD Compatibility Functions for Priorities

Solaris 2.3 supports a BSD compatibility library, which includes the setpriority() and getpriority()

system calls. These system calls allow priorities of groups of processes to be speci�ed, as well as the
priority of all processes belonging to a user to be set simultaneously.

Although these calls are considerably more powerful and 
exible than nice, the programmer should not
utilise them if:

1. Portability is an issue.

2. Non-BSD system libraries are also being used.

3. A multi-threaded application is being developed.
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1.2.3 Process Termination

A number of conditions can cause a program to terminate:

1. There is no more code to execute (the end of main() is reached).

2. The exit() function is executed.

3. the abort() function is executed.

4. A signal is sent to the process which causes it to terminate.

Normal program termination occures when either of the �rst two conditions are satis�ed. The abort()
system call is used when a process detects an error condition which it can not recover from.

The exit() System Call

The purpose of the exit() system call is to gracefully terminate the currently executing process. A
status number is returned by exit() to the parent of the terminating process. The status value is used
to indicate if the terminating process was successful or not. Typically negative status values indicate an
error occured, while 0 indicates successful execution.

The synopsis for exit() follows:

#include <stdlib.h>

void exit(int status);

The use of exit() to terminate a process is not required, but is encouraged to ensure that the status
value of the terminating process is explicitly set. exit() never returns to the calling process, so it's
return type is void. Any open streams and �les belonging to the terminating process are automatically

ushed and closed during exit().

The abort() System Call

The abort() system call is similar to exit in use, except that no user-de�ned status is returned to the
parent of the terminating process. Internally, abort generates a signal which terminates the process.
The SIGABORT signal, generated by abort(), can neither be blocked or ignored. Signals are discussed
later in this chapter.

The synopsis for abort() follows:

#include <stdlib.h>

void abort(void);

1.2.4 Suspending a Process

Sometimes it is necessary to suspend the execution of a process until some externel event occurs. This
can be accomplished with the pause() system call. pause() always returns -1. The synopsis for pause()
follows:

#include <unistd.h>

int pause(void);

6



If process needs to be suspended for a certain amount of time, the sleep() system call can be used.
sleep() takes a single argument which speci�es the number of seconds to suspend the process. The
synopsis for sleep() follows:

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

1.3 Process Groups

A parent process and it's children are all associated together. The kernel keeps track of the association
by using process groups. By default, every process executed from a UNIX login shell belongs to the same
group. Each process group has a unique identi�er, called the Group ID (GID). The GID for a group is
determined by the PID of the controlling process of the group (usually a login shell).

By default, processes inherit the GID of their parent. Thus a group of processes is a heirarchical
structure, with the controlling process at the root of the heirarchy. The controlling process of a group
is also known as the session leader.

The setpgrp() System Call

The setpgrp() system call creates a new process group. The setpgid() system call adds a process to
a process group.

The synopsis for setpgrp() follows:

#include <sys/types.h>

#include <unistd.h>

pid_t setpgrp(void);

int setpgid(pid_t pid, pid_t pgid);

If the process calling setpgrp() is not already a session leader, the process becomes one by setting its
GID to the value of its PID. setpgid() sets the process group ID of the process with PID pid to pgid.
If pgid is equal to pid then the process becomes the group leader. If pgid is not equal to pid, the
process becomes a member of an existing process group.

The getpid() Family of System Calls

The synopsis for getpid() family of system calls follows:

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getpgrp(void);

pid_t getppid(void);

pid_t getpgid(pid_t pid);

The getpid() system call returns the PID of the calling process. getpgrp() returns the process group
ID (GID) of the calling process. getppid() returns the parent process PID of the calling process.
getpgid() returns the process group ID of the process whose process ID is equal to pid, or the process
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group ID of the calling process, if pid is equal to 0. If successful, these functions return the correct PID
or GID. If an error occures -1 will be returned.

Below is an example of using setpgrg(), getpid() and getpgrp(). The example also introduces signals,
which will be discussed in the next section.

#include <signal.h>

int main(void)

{

register int i;

setpgrp();

for (i = 0; i < 10; ++i)

{

if (fork() == 0)

{ /* In the child process */

if (i & 1)

setpgrp();

printf("pid = $d, gid = %d\n", grepid(), getpgrp());

pause();

}

}

kill(0, SIGINT);

}

In the code above the process resets its GID and then spawns 10 children. Each child initially has the
same GID as their parent, but the processes created during the odd iterations create their own GIDs
using setpgrp(). The execution of the children is then suspended. Once all of the children have been
created the parent sends a termination signal to every process in its group and then exits. The �ve
\odd" processes will not be terminated because they do not belong to the parents group anymore.

1.4 Signals

Signals inform processes of the occurence of asychronous events. Every type of signal has a handler

which is a function. All signals have default handlers which may be replaced with user-de�ned handlers.
The default signal handlers for each process usually terminate the process or ignore the signal, but this
is not always the case.

Signals may be sent to a process from another process, from the kernel, or from devices such as terminals.
The ^C, ^Z, ^S and ^Q terminal commands all generate signals which are sent to the foreground process
when pressed.

The delivery of signals to a process is handled by the kernel. Signals are checked for whenever a process
is being rescheduled, put to sleep, or re-executing in user mode after a system call. Figure 1.2 shows
when signals are tested for and handled during state changes.

1.4.1 Signal Types

There are many types of signals. The list below describes the most commonly encountered signals:

SIGHUP Hangup. This signal is sent to all processes attached to a control terminal when that terminal
is disconnected. This signal is also sent to all processes belonging to a process group when the
group controlling process is terminated.
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Figure 1.2: Checking and Handling Signals in the Process State Diagram

SIGINT Interrupt. This signal is sent to all processes associated with a terminal when ^C is pressed.

SIGQUIT Quit. Sent by the kernel to a process that is to be abnormally terminated. Generates a core
�le for the terminating process.

SIGILL Illegal instruction. This signal is sent by the kernel to a process which is trying to execute
invalid code.

SIGTRAP Trace trap. Used by debuggers and ptrace().

SIGFPE Floating-point exception. This signal is sent by the kernel to a process that generates an FP
exception such as over
ow or divide-by-zero.

SIGKILL Kill. Allows one process to send a signal to terminate another process. SIGKILL can not be
blocked nor caught.

SIGSYS Bad argument to system call. This signal is sent by the kernel to a process which has made
a system call with an inappropriate argument. Usually the system call would return -1, but
sometimes the kernel is not able to handle the condition, hence this signal is sent.

SIGPIPE Broken pipe. This signal is generated by the kernel when a process tries to write to a pipe that
has no reader.
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SIGALRM Alarm clock. This signal is sent by the kernel to a process which had previously set up delay
using alarm()

SIGTERM Software termination signal. A user-de�nable signal that is usually used for terminating a
process.

SIGUSR1 User signal number one. Another user-de�nable signal.

SIGUSR2 User signal number two. Yet another user-de�nable signal.

SIGCLD Death of a child. Sent to a parent process by the kernel when one of the parent child processes
termiates. This isgnal is used by the wait() system call.

SIGSEGV Segmentation violation. This signal is generated by the kernel whenever a process tries to access
memory out side of its virtual address space. The default action for this signal is to generate a
core �le and terminate the process.

1.4.2 Signal Handlers

User written processes can catch the majority of signals by installing a user-de�ned handler. This is
accomplished by the signal() system call. User processes can also generate signals to be sent to other
processes using the kill() system call.

The signal() System Call

The signal() system call installs a new signal handler for a particular signal type. signal() takes
two arguments, the �rst of which is the type of signal, and the second is the address of the new signal
handler. signal() returns the address of the old signal handler. It is wise to store the return address.
The synopsis for signal() is given below:

#include <signal.h>

#include <unistd.h>

void (*signal(int signum, (void *handler)(int))))(int);

It is also possible to re-install the default signal handler or ignore the signal with signal(). Instead
of specifying the address of a signal handler, one may specify one of the following symbols de�ned in
signal.h:

SIG DFL Use the default signal handler.

SIG IGN Ignore the signal.

It is important to note that under UNIX System V (which Solaris is based on) once a signal handler
has been installed, it is only valid for the receipt of a single signal. After the signal has been caught
and handled, the default signal handler for the sent signal is automatically reinstated. Thus if the user-
de�ned signal handler is to be used multiple times, it is necessary to reinstate the user de�ned signal
handler inside the handler itself.

The kill() System Call

To transmit a signal to another process the kill() system call is used. The synopsis for kill() follows:

#include <signal.h>

int kill(pid_t pid, int sig);
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pid identi�es the set of processes to receive the signal, and sig is the type of signal to be sent. The
following list shows the correspondence betweens values of pid and sets of processes.

� If pid is positive, then pid is the PID of a particular process.

� If pid is 0, then the kernel sends the signal to all processes in the senders group.

� If pid is -1, then the signal is sent to all processes with the senders user ID.

� If pid is less than -1, then the signal is sent to the process group with GID equal to the absolute
of pid.

kill() returns a negative number if the signal could not be sent, otherwise it return 0.

1.4.3 Signals in Action

In the example code for setting process groups we saw the use of kill() for transmitting SIGINT to
a process group. The �ve \odd" processes which created their own process groups do not receive the
signal.

The code below illustrates the use of signal(), and also pinpoints a potential problem with SYSV signal
handling:

#include <unistd.h>

#include <stdio.h>

#include <signal.h>

sigcatcher(void)

{

printf("PID %d caught one\n", getpid());

signal(SIGINT, sigcatcher);

}

main(void)

{

int ppid;

signal(SIGINT, sigcatcher);

if (fork() == 0)

{

sleep(5); /* in the child */

ppid = getppid();

while (1)

if (kill(ppid, SIGINT) == -1)

exit();

}

nice(10); /* parent runs with lower priority */

while (1);

}

In this example, it is possible for the following sequence of events to occur:

1. The child sends SIGINT to the parent.

2. The parent process catches the signal, but is then preempted by the kernel.

3. The child executes again, sending another signal to it's parent.
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4. The parent receives the second signal, but has not had a chance to reinstate the user-de�ned
handler, thus the default action for the signal is made and the parent process exits.

The likelihood of these events occuring is increased by the fact that the parent process executes at a
lower priority than the child. This is called a race condition, and it is the programmers responsibilty to
avoid code that might generate a race.

BSD versions of UNIX handle signals in a more sensible way. After a signal has been delievered to a
process, the default handler for that signal is not reinstalled, and so race conditions can not be generated.
Solaris supports BSD signals via the BSD compatibility library. The BSD Compatibility library should
be avoided however if portability and maintenance are high priority considerations.

1.5 Exercises

1. Rewrite the \Hello World" program so that \Hello" is always printed before \World". Note that
you must still use fork().

2. Write a UNIX menu program for \dummies" that allows the commands ls, vi and mail to be
executed. You must allow optional arguments to be provided to the commands.

3. Write a utility which displays the hierarchy of processes currently associated with the command
shell. (The parent of your utility will be the command shell itself)

4. Write some code that traps the SIGINT signal and asks the user if they really wish to terminate
the process. If the user does wish to terminate the process the perform he appropriate action,
otherwise reinstate the signal handler.
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Chapter 2

Files and The File System

2.1 Introduction

Anyone familiar with C programming should already have a good grasp of the ideas behind the UNIX �le
system. We will not cover �le streams or the FILE data structure in this course because the probability
of being redundant is extremely high.

We will cover �le descriptors, and the system calls that operate on them. In Section 2.2 we cover basic
�le descriptor functions. In Section 2.3 we look at the UNIX directory structure and the system calls
which manipulate it.

2.2 File Manipulation

A �le descriptor is a small integer value that represents an open �le. File descriptors are created with
the open() and creat() system calls. All of the system calls we will investigate here use descriptors
to indicate which �le is being a�ected. Each process has it's own �le descriptor table from which the
open(), creat() and dup() system calls obtain new descriptors.

The open() System Call

The synopsis for open() is:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int oflag, /* mode_t mode */ ...);

The open() system call opens a �le for reading or writing. It takes two or three arguments. The path
argument is the path of the �le to be opened. The mode argument speci�es the access permissions to the
�le for the user, group, and others using the UNIX octal permission bits. oflag allows various options
to be set by ORing the following constants together:

O RDONLY Open a �le for reading only.

O WRONLY Open a �le for writing only.

O RDWR Open a �le for reading and writing.
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O NDELAY Don't block on reading or writing.

O APPEND Write to the end of the �le.

O CREAT Create the �le if it doesn't exist.

O EXCL Open the �le only if it doesn't exist (with O CREAT).

O TRUNC Truncate the �le if it exists.

open() returns a valid �le descriptor if successful or -1 otherwise.

The creat() System Call

The synopsis for creat() is:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int creat(const char *path, mode_t mode);

creat() creates a new regular �le or prepares to rewrite an existing �le named by path. The mode

argument speci�es the access permissions to the �le for the user, group, and others using the UNIX
octal permission bits. creat() returns a valid �le descriptor if successful or -1 otherwise.

The close() System Call

The synopsis for close() is:

#include <unistd.h>

int close(int fildes);

close() takes a single argument which is the descriptor of the �le to close. It returns 0 if successful
or -1 otherwise. If close() is successful, the �le descriptors entry in the �le descriptor table is marked
free.

The read() System Call

The synopsis for read() is:

#include <sys/types.h>

#include <unistd.h>

size_t read(int fildes, void *buf, size_t nbyte)

The read() system call reads in nbyte bytes into buf from the �le represented by fildes. read()

returns the number of bytes successfully read from the �le.
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The write() System Call

The synopsis for write() is:

#include <unistd.h>

ssize_t write(int fildes, const void *buf, size_t nbyte);

The write() system call writes nbyte bytes from buf to the �le represented by fildes. write() returns
the number of bytes successfully written to fildes.

The lseek() System Call

The synopsis for lseek() is:

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

The lseek() system call moves the �le pointer for fildes by offset bytes from whence. whence is
determined from one of the following three constants:

SEEK SET The pointer is set to offset bytes from the start of the �le.

SEEK CUR The pointer is set to the current position plus offset bytes.

SEEK END The pointer is set to the size of the �le plus offset bytes.

If lseek() is successful is returns the new �le pointer location relative to the start of the �le.

The unlink() System Call

The synopsis for unlink() is:

#include <unistd.h>

int unlink(const char *path);

The unlink() system call removes the �le indicated by path from the �le system. The deletion of the
�le is irreversible. unlink() will remove symbolic links, but should not be used to remove directories.
unlink() returns 0 if successful and -1 otherwise. If unlink() fails, it is most likely due to an ownership
permission problem.

The link() System Call

The synopsis for link() is:

#include <unistd.h>

int link(const char *existing, const char *new);

The link() system call creates a new directory entry for a �le that already exists. This system call
e�ectively allows a �le to have more than one name. link() returns 0 if successful and -1 otherwise.
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The chmod() System Call

The synopsis for chmod() is:

#include <sys/types.h>

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

int fchmod(int fildes, mode_t mode);

The chmod() system call changes the �le permissions of the �le indicated by path according to the value
of mode. The fchmod() call is identical to chmod() except that fildes indicates which �le to change
permissions on.

The chown() System Call

The synopsis for chown() is:

#include <unistd.h>

#include <sys/types.h>

int chown(const char *path, uid_t owner, gid_t group);

int fchown(int fildes, uid_t owner, gid_t group);

The chown() and fchown() system calls change the owner ID and group ID of the target �le. Ownership
of a �le can only be changed if the user is root or the current owner of the �le is changing it's ownership.
The chown() and fchown() calls return 0 if successful and -1 otherwise.

The dup() System Call

The synopsis for dup() is:

#include <unistd.h>

int dup(int fildes);

The dup() system call returns a new �le descriptor which has in common with fildes:

� The same open �le or pipe.

� The same �le pointer.

� The same access mode (O RDONLY, O WRONLY or O RDWR).

dup() always returns the �rst available �le descriptor. dup()will return a valid �le descriptor if successful
or -1 otherwise.

The fcntl() System Call

The synopsis for fcntl() is:

#include <sys/types.h>

#include <fcntl.h>

int fcntl(int fildes, int cmd, /* arg */ ...);
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The fcntl() system call gives programmers more control over open �le descriptors. fildes is the �le
descriptor to be operated on, and cmd is a function to perform. There are many constants de�ned in
fcntl.h which specify commands. Some are listed here:

F DUPFD Duplicate a �le descriptor (same as dup()).

F GETFD Get the close-on-exec 
ag.

F SETFD Set the close-on-exec 
ag.

F GETFL Get the filedes status 
ags.

F SETFL Set the filedes status 
ags.

The fstat() System Call

The synopsis for fstat() is:

#include <sys/types.h>

#include <sys/stat.h>

int stat(const char *path, struct stat *buf);

int fstat(int fildes, struct stat *buf);

The stat() and fstat() system calls allow the programmer to obtain information about a �le. stat()
is used when the �le is not currently open, and fstat() is used when the �le is opened and fildes is
available. buf is a pointer to the stat structure de�ned in sys/stat.h:

struct stat {

dev_t st_dev; /* device major and minor numbers */

ino_t st_ino; /* inode number */

mode_t st_mode; /* file type and permissions */

nlink_t st_nlink; /* number of links */

uid_t st_uid; /* owner user ID */

gid_t st_gid; /* owner group ID */

dev_t st_rdev; /* used for devices */

off_t st_size; /* size of the file */

time_t st_atime; /* last access time */

time_t st_mtime; /* last modification time */

time_t st_ctime; /* last time stat info modified */

};

2.3 Directory Manipulation

Directories are special �les which contain other �les under UNIX. The directories of a �le system form
a hierarchy, with \/" being the root of the heirarchy. System calls are available for changing, creating,
removing and searching directories.

The chdir() System Call

The synopsis for chdir() is:

#include <unistd.h>

int chdir(const char *path)

17



The chdir() system call changes the current working directory to path. It returns 0 if successful or -1
otherwise.

The getcwd() System Call

The synopsis for getcwd() is:

#include <unistd.h>

extern char *getcwd(char *buf, size_t size);

The getcwd() system call returns the current working directory. If buf is 0, then getcwd() allocates
enough dynamic memory to store the path, otherwise the path will be stored in buf. size must be at
least two bytes bigger than the required number of characters to store the path. getcwd() returns a
pointer to a string which stores the path of the current directory.

The rmdir() System Call

The synopsis for rmdir() is:

#include <unistd.h>

int rmdir(const char *path);

rmdir() removes the directory speci�ed by path providing that the directory is empty. rmdir() returns
0 if successful and -1 otherwise.

The mkdir() System Call

The synopsis for mkdir() is:

#include <sys/types.h>

#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

The mkdir() system call creates a new directory based on path and sets it's access permission bits to
mode. mkdir() returns 0 if successful and -1 otherwise.

The ftw() System Call

The synopsis for ftw() is:

#include <ftw.h>

int ftw(const char *path, int (*fn) (char *, struct stat *, int), int depth);

The ftw() system call provides a file tree walk capability. It takes three arguments: path is the
path to start the tree walk at. fn is a user-de�ned function that is called for every entry found during
the �le tree walk. depth speci�es the number of �le descriptors to use during the �le tree walk. The
more descriptors used the faster the walk will proceed. Be careful in the value you specify for depth {
there is only a �nite number of �le descriptors available per process.

The fn() user-de�ned function takes three arguments. A template for this function is provided below:
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int fn(char *name, struct stat *buf, int type);

The user-de�ned function should always return zero unless you wish to terminate the �le tree walk. name
is the name of the directory entry currently under scrutiny. type indicates what type of �le is currently
under scrutiny, and will have one of the following constant values declared in ftw.h:

FTW F The object is a �le.

FTW D The object is a directory.

FTW DNR The object is an unreadable directory.

FTW NS The object caused stat() to fail.

The code below illustrates the use of ftw() to list a directory hirerachy:

/* ftw.c -- file tree walk demonstration */

#include <sys/types.h>

#include <sys/stat.h>

#include <ftw.h>

int list(char *name, struct stat *status, int type)

{

if (type == FTW_NS)

return 0;

if (type == FTW_F)

printf("%-30s\t0%3o\n", name, status->st_mode & 0777);

else

printf("%-30s*\t0%3o\n", name, status->st_mode & 0777);

return 0;

}

int main(int argc, char *argv[])

{

int list();

if (argc <= 1)

ftw(".", list, 1);

else

ftw(argv[1], list, 1);

exit(0);

}
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Chapter 3

Interprocess Communication

3.1 Introduction

Interprocess communication is an important part of any time-sharing computer system. Modern day
applications demand multiple communicating processes for speed and e�ciency. We have already exam-
ined one form of interprocess communication when we looked at signals, but signals are limited by both
the information they can transmit and the speed of operation.

In Section 3.2 we look at pipes for communicating between processes, and in Section 3.3 we investigate
semaphores, shared memory and messages.

3.2 Pipes

A pipe is a uni-directional communications channel which couples one process to another. Bi-directional
communications is easily accomplished between processes by using two pipes. Data can be written to
and read from pipes using the standard write() and read() I/O routines.

3.2.1 Unnamed Pipes

An unnamed pipe is a pipe created between two processes that is valid as long as the process which reads
from the pipe exists. An unnamed pipe is created with the pipe() system call. The synopsis for pipe()
is given below:

#include <unistd.h>

int pipe(int filedes[2]);

The pipe() system call takes a signle argument, which is a pointer to an array of two integers.
filedes[0] is a descriptor for reading from the pipe and filedes[1] is a descriptor for writing to
the pipe. The pipe() call returns 0 if successful and -1 otherwise.

The code below illustrates using a pipe for communicating between two processes. In this simple example
a pipe is created, then a child is forked. the child process writes \Hi there" to the pipe. The parent
waits for the child to terminate and then reads from the pipe and displays the result.

/* pipe.c -- demonstrates a pipe for communication between processes */

#include <stdio.h>

20



#include <unistd.h>

#define error(x) { perror(x); exit(-1); }

main()

{

int pfds[2];

int pid;

char buffer1[] = "Hi there\n";

char buffer2[] = " ";

if (0 > pipe(pfds))

error("pipe() failed");

pid = fork();

if (pid == 0)

write(pfds[1], buffer1, sizeof buffer1);

else {

wait((int *) 0);

read(pfds[0], buffer2, sizeof buffer2);

printf("%s", buffer2);

}

}

Pipes have a �xed size. If a process continually writes to a pipe, with no other process reading from
it, then eventually the write() system call will block until a process reads from the pipe, making more
space.

It is possible to stop write() from blocking using the fcntl() system call with the O NDELAY. The
read() system call can also be stoped from blocking when there is no data available in the pipe using
fcntl() with O NDELAY. An example for preventing write() from blocking is shown below:

#include <fcntl.h>

.

.

.

fcntl(filedes, F_SETFL, O_NDELAY);

Clever use of pipe(), dup(), fork() and exec() will enable you to execute programs with stdin and
stdout being redirected.

3.2.2 Named Pipes

Unnamed pipes do not exist permanently in the system. They also can only connect processes that
share a common ancestry, which severely limits the IPC abailities of pipes. To overcome these problems,
named pipes were introduced.

Named pipes are really a special kind of �le known as a FIFO (�rst-in, �rst out). Named pipes are
created with the mknod() system call. Once a named pipe has been created, it can be opened for
reading or writing with the open() system call, just like an ordinary �le.
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The mknod() System Call

The mknod() system call is used to create normal �les, character special �les, block special �les and
FIFOs. mknod() takes three arguments. The �rst argument speci�es the path of the �le to be created.
The second argument, mode, speci�es both the type and access permissions for the �le. The type of �le
to be created is determined by one of these four constants de�ned in stat.h:

S IFREG A regular �le.

S IFCHR A character special �le.

S IFBLK A block special �le.

S IFIFO A FIFO �le.

If S IFCHR or S IFBLK is speci�ed then dev speci�es the major and minor device numbers for a device.
We will cover devices later in the course. mknod() return 0 on success or -1 otherwise.

Below is some code analogous to the unnamed pipe example, except that it uses named pipes.

/* npipe.c -- demonstrates named pipes for interprocess communication */

#include <stdio.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#define error(x) { perror(x); exit(-1); };

main()

{

int fd;

int pid;

char buffer1[] = "Hi there\n";

char buffer2[] = " ";

mknod("fifo", 010777, 0);

pid = fork();

if (pid == 0)

{

fd = open("fifo", O_WRONLY);

write(fd, buffer1, sizeof buffer1);

close(fd);

} else {

fd = open("fifo", O_RDONLY);

read(fd, buffer2, sizeof buffer1);

close(fd);

printf("%s", buffer2);

}

}

3.3 SVID Compilance

3.3.1 Introduction

In 1985 AT&T introduced the System V Interface De�nition (SVID). SVID introduced record locking,
which we have already examined. It also introduced and standardized some very important interprocess
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communication facilities, which are described as the IPC package. Three sets of IPC facilities were
introduced:

1. Message passing. The message passing facility allows a process to send and receive messages; a
message being in essence an arbitary sequence of bytes.

2. Semaphores. Compared with message passing, semaphores provide a rather low-level means of pro-
cess synchronisation, not suited to the transmission of large amounts of information. Semaphores
are extremely e�cient however, and are widely used.

3. Shared memory. This �nal IPC facility allows two or more processes to share data contained in
speci�c memory segments. Shared memory represents an extremely e�cient method of sharing
data between processes, but relies of hardware support. Nearly all modern day computer systems
provide the required level of hardware support.

Although these facilities are part of UNIX SYSV, they are not an integral part of the kernel. During
installation of UNIX, the system administrator has the option of enabling or disabling SVID IPC features.
The ipcs shell command can be used to verify which IPC facilities have been installed.

3.3.2 IPC Facility Keys

Before we start looking at each IPC facility in earnest, we will describe the commonalities that these
facilities share.

The programming interfaces of semaphores, shared memory and messages are very similar. The most
important common feature of these interfaces is the IPC facility key. Numerical keys are used to identify
IPC objects. For any process to be able to access an IPC object, it must know the value of the key for
that object. IPC keys have the type key t which is de�ned in types.h.

The major problem with keys is avoiding the use of the same key value for di�erent IPC objects. There
is no standardized method for key allocation, so it is up to the system programmer to choose a unique
one. Good documentation of used keys and the use of the ipcs UNIX command for viewing currently
used keys should help alleviate the problem.

A routine called ftok(), found in most standard C libraries, returns a unique key based on a �le system
path which is speci�ed as an argument. A second argument to ftok(), called id, allows further levels
of uniqueness to be speci�ed (up to 256 levels). The usage of ftok() is shown below:

#include <sys/types.h>

#include <sys/ipc.h>

key_t key, ftok();

char *path, id;

.

.

.

key = ftok(path, id);

The programmer must be wary of the path they choose to use for ftok(). If the path is changed, then
changed again to re
ect it's original state, ftok() will return di�erent keys. It is probably better to
avoid ftok() and choose IPC keys yourself.

3.3.3 IPC Operations

There are three classes of IPC operations:

23



1. Get operations. Get operations are used for creating IPC objects and returning facility identi�ers

which are used by the other IPC operations.

2. Control operations. Control operations are used for obtaining status information, changing status
information, and removing IPC objects.

3. Speci�c operations. These operations are used for manipulating IPC objects, such as sending a
message or changing the value of a semaphore.

Permission to access an IPC object must be available before any operations on that object can be
performed. Like �les, IPC objects have owners, belong to groups, and have read/write permission bits
for users, groups and others.

3.3.4 Message Queues

A message is a sequence of bytes to be transmitted from one process to another. Messages are passed
between processes via message queues. Message queues are created with the msgget() system call.
Messages can be sent and received by the msgsnd() and msgrcv() system calls. The msgctl() system
call serves three purposes: it allows a process to obtain the status of the message queue, to change some
of the limits associated with the message queue, or to delete the message queue from the system.

The msgget() System Call

The msgget() system call takes two arguments: an IPC key that speci�es the message queue and a set
of 
ags which determine: (a) if a new or existing queue is to be used, and (b) the permissions for that
queue. msgget() returns an integer that represents the message queue handle. If msgget() fails then it
returns -1. The synopsis for msgget() is given below:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget(key_t key, int msgflg);

The msgflg parameter determines the exact action performed by msgget(). Two constants are of
relevance here, both de�ned in ipc.h. They can be ORed together if necessary:

IPC CREAT This tells msgget() to create a message queue for the value key if one does not already exist.
If IPC CREAT is not speci�ed, then a message queue identi�er is only returned if the queue already
exists.

IPC EXCL This used in conjunction with IPC CREAT will cause msgget() to return a message queue
identi�er only if the message queue did not previously exist.

Along with the two constants documented above, a number representing the read/write permissions for
the user, group and others can be speci�ed in the same manner that permissions are speci�ed for �les.
For example, if we wanted to exclusively create a new message queue so that only the owner of the queue
can use it, we would specify 0600|IPC CREAT|IPC EXCL for the msgflg argument to msgget().

The msgsnd() and msgrcv() System Calls

msgsnd() and msgrcv() send and receive messages respectively. The synopsis for msgsnd() and msgrcv()
follows:
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#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

struct msgp {

long mtype;

char mtext[SOMEVALUE];

};

msqid is the message queue identi�er returned by msgget(). msgp is a pointer to a user-de�ned data
structure which contains the message to be sent or received. struct msgp is an example of a user
de�ned message. The mtype �eld allows messages to be categorized or prioritized. msgsz is the size of
the message to be sent or received in bytes.

The msgtyp argument to msgrcv() allows for the receipt of messages based on the catergory or priority
of the message speci�ed in it's mtype �eld. If msgtyp is 0 then the �rst message on the queue will be
retreived. If msgtyp is a number greater than 0 then the �rst message in the queue with that number
will be retreived. Finally, if the value of msgtyp is negative then the �rst message with mtype value less
than or equal to the absolute of msgtyp is retreived.

The msgflg argument to msgsnd() and msgrcv() is used to specify control options. For msgsnd(), if
IPC NOWAIT is speci�ed and there are not su�cient system resources to send the message, msgsnd()
will fail. If IPC NOWAIT is not set, then the calling process will sleep until resources are available. For
msgrcv(), if IPC NOWAIT is speci�ed and no messages are available to be received then msgrcv() will
return to the caller immediately, otherwise it will wait.

The IPC NOERROR 
ag can also be set for msgrcv(). This causes messages that are bigger than msgsz to
be received but truncated. Normally, a message that is larger than msgsz would cause msgrcv() to fail.

The msgctl() System Call

The msgctl() system call allows message queue to be removed, modi�ed or queried about its state.
msgctl() takes three arguments, and returns 0 on success or -1 if an error is detected. The synopsis for
msgctl() follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgctl(int msqid, int cmd, /* struct msqid_ds *buf */ ...);

msqid is the message queue identi�er returned by msgget(). buf is a pointer to a structure which is used
for storing control variables for the message queue. Refer to sys/msg.h for the details of the msqid ds

structure. There are three options for the cmd argument, which are described below:

IPC STAT Tells the system to place status information about the queue into buf.

IPC SET Allows some of the control variables for a message queue to be changed. The only �elds of the
msqid ds structure that can be changed are:

msqid ds.msg perm.uid

msqid ds.msg perm.gid
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msqid ds.msg perm.mode

msqid ds.msg qbytes

IPC RMID This removes the queue from the system.

Note that the IPC SET and IPC RMID cammoands can only be executed by the owner of the message
queue or by the superuser.

An Example of Message Queues

The following code uses messages to implement a client{server system. The server waits for messages
from any client in an in�nite loop. The server must be running before a client is executed. When a client
is executed, it sends a message to the server which contains it's PID number. The server then prints to
the terminal that it has received a message from a client and then sends its own PID back to the client.
The client then displays the servers PID and terminates.

/* server.c -- demonstration of messages & client-server programming */

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#define MSGKEY 75

struct msgform {

long mtype;

char mtext[256];

};

int msgid;

main()

{

struct msgform msg;

int i, pid, *pint;

extern cleanup();

for (i = 0; i < 20; ++i)

signal(i, cleanup);

msgid = msgget(MSGKEY, 0777 | IPC_CREAT);

while (1)

{

msgrcv(msgid, &msg, 256, 1, 0);

pint = (int *) msg.mtext;

pid = *pint;

printf("server: receive from pid %d\n", pid);

msg.mtype = pid;

*pint = getpid();

msgsnd(msgid, &msg, sizeof(int), 0);

}

}

cleanup()
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{

msgctl(msgid, IPC_RMID, 0);

exit();

}

/* client.c -- demonstration of messages & client-server programming */

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

#define MSGKEY 75

struct msgform {

long mtype;

char mtext[256];

};

main()

{

struct msgform msg;

int msgid, pid, *pint;

msgid = msgget(MSGKEY, 0777);

pid = getpid();

pint = (int *) msg.mtext;

*pint = pid;

msg.mtype = 1;

msgsnd(msgid, &msg, sizeof(int), 0);

msgrcv(msgid, &msg, 256, pid, 0);

printf("client: receive from pid %d\n", *pint);

}

3.3.5 Shared Memory

Shared memory allows two or more processes to share a physical memory segment. Hardware support
is required for shared memory, but most modern computers systems that support virtual paged or
segmented memory by de�nition have the necessary hardware to support shared memory.

In order for a process to use shared memory, the physical memory set aside for use between multilpe
processes must �rst be attached to the processes address space. Later, when the process no longer
required shared memory, the shared segment is detached.

The shmget() System Call

The shmget() system call takes three arguments: a key associated with the shared memory object, a
size which speci�es the required minimum amount of shared memory, and 
ags which are the same as
for the msgflg argument of the msgget() system call. The synopsis for shmget() follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>
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int shmget(key_t key, int size, int shmflg);

The shmget() call returns a shared memory identi�er if successful or -1 if an error is detected.

The shmat() and shmdt() System Calls

The shmat() routine attaches shared memory to a process while shmdt() detaches the memory when it
is no longer required. The synopsis for shmat() and shmdt() follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

int shmdt(void *shmaddr);

The shmat() system call takes three arguments: shmid is the shared memory identi�er returned by
a call to shmget(), shmaddr is an address where the programmer would prefer the shared memory
segment to reside, and shmflg allows the user to specify whether the shared memory is read-only with
the SHM RDONLY constant. shmat() returns the address of the shared memory segment if successful or
(char *) -1 if an error occurs.

If the shmaddr argument to shmat() is 0, then shmat() automatically chooses a start address for the
shared memory segment. If shmaddr is non-zero, then it speci�es a perfered memory location for the
shared segment. By specifying the SHM RND 
ag, the address given by shmaddr will be rounded to the
nearest page boundary in memory. The use of a non-zero value for shmaddr is discouraged because it
requires the programmer to have intimate knowledge about the layout of the program in memory.

The shmdt() call performs the opposite function of shmat(); that is, it detaches shared memory from
a process. It takes a single argument shmaddr which is the address of the shared segment returned by
shmat(). shmdt() returns 0 if successful and -1 if an error occurs.

The shmctl() System Call

The shmctl() system call exactly parallels msgctl(), and cmd can take the values IPC STAT, IPC SET

and IPC RMID. The synopsis for shmctl() follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Refer to sys/shm.h for details of the shmid ds structure.

An Example of Shared Memory

The following program demonstrates the use of shmget(), shmat() and shmctl(). First a shared
memory region of 128K bytes is created with shmget(). Then the process uses shmat() twice to attach
the shared region to two di�erent virtual addresses. The second virtual address is for read-only memory.
The �rst 16 words of the shared memory region is then �lled with the numbers 0 to 15, and then the
contents are read back via the second virtual address and displayed. The program then suspends itself.
Any signal sent to the process will cause the shared memory to be destroyed and the process to exit.
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/* shm1.c -- example of attaching shared memory twice to a process */

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SHMKEY 75

#define K 1024

int shmid;

cleanup()

{

shmctl(shmid, IPC_RMID, 0);

exit();

}

main()

{

int i, *pint;

char *addr1, *addr2;

for (i = 0; i < 20; ++i)

signal(i, cleanup);

shmid = shmget(SHMKEY, 128 * K, 0777|IPC_CREAT);

addr1 = (char *) shmat(shmid, 0, 0);

addr2 = (char *) shmat(shmid, 0, SHM_RDONLY);

printf("addr1 0x%x addr2 0x%x\n", addr1, addr2);

pint = (int *) addr1;

for (i = 0; i < 16; ++i)

*pint++ = i;

pint = (int *) addr1;

*pint = 16;

pint = (int *) addr2;

for (i = 0; i < 16; ++i)

printf("index %d\tvalue %d\n", i, *pint++);

pause();

}

The program below attaches itself to the shared memory region created in the program above and reads
the �rst 16 words, printing out the value of each word. Its output ought to be exactly the same as the
output of the program above if the shared memory is working correctly.

/* shm2.c -- example of sharing memory between two processes */

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define SHMKEY 75

#define K 1024

int shmid;

main()

{

int i, *pint;
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char *addr;

shmid = shmget(SHMKEY, 64 * K, 0777);

addr = (char *) shmat(shmid, 0, 0);

pint = (int *) addr;

while (*pint == 0);

for (i = 0; i < 16; ++i)

printf("index %d\tvalue %d\n", i, *pint++);

}

3.3.6 Semaphores

The semaphore concept was �rst put forward by Dutch theoretician, E. W. Dijkstra, as a solution to
the problem of process synchronisation. A semaphore can be considered as an integer variable on which
two atomically indivisable operations can be performed. The operations are called wait and signal, the
latter not to be confused with the UNIX signal(). The C pseudocode below gives the de�nitions of
these operations.

void wait(semaphore s)

{

if (s != 0)

--s;

else

while (s == 0);

}

void signal(semaphore s)

{

++s;

}

Semaphores are used to ensure that only one process at any time can be utilizing a resource. They can
provide mutual exclusion between processes and synchronisation.

The implementation of SVID semaphores allows for semaphore sets. That is, an IPC semaphore object
may contain one or more semaphores. This results in a more complex programming interface, but a�ords
greater 
exibility and power.

The semget() System Call

The semget() system call takes three arguments: a key for the IPC object, a number nsems which
speci�es the number of semaphores in the set to be created, and some 
ags. semget() returns a
semaphore set identi�er if successful and -1 if an error is detected. The synopsis for semget() follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

Note that the legal values for semflg are the same as those for the msgflg argument of the msgget()

system call. The semantics of the 
ags are also identical.
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The semop() System Call

The semop() system call has less than straight-forward semantics. It is very powerful however. semid

is a semaphore set identi�er returned by the semget() call. nsops gives the number of semaphores in
the set to be operated on. sops is an array of nsops sembuf structures which determine the operation
performed on each individual semaphore. The synopsis for semop() follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

The sembuf structure speci�es which semaphore to operate on, the operation itself, and some 
ags. The
�elds of the sembuf structure that the programmer needs to know about are:

short sem num The semaphore to operate on (�rst semaphore at 0).

short sem op The operation to execute.

short sem flg The 
ags for the operation.

The behaviour for semop() is determined by the value of sem op on a per-semaphore basis. The following
pseudocode summarises the possible behaviours:

case: sem_op < 0

if (semval >= ABS(sem_op)

semval = semval - ABS(sem_op);

else

if (sem_flg & IPC_NOWAIT)

return -1;

else

while (semval < ABS(sem_op));

semval = semval - ABS(sem_op);

endif

endif

case: sem_op > 0

semval = semval + sem_op;

case: sem_op = 0

if (sem_flg & IPC_NOWAIT and semval != 0)

return -1;

else

while (semval != 0);

endif

It should be clear from this pseudocode that the IPC NOWAIT 
ag prevents the semop() routine from
blocking. Another 
ag, SEM UNDO, should always be speci�ed. It tells the system to adjust (\undo") the
semaphore values appropriately when a process terminates.

The semctl() System Call

The semctl() system call takes four arguments. semid is a semaphore set identi�er returned by
semget(). semnum identi�es a particular semaphore for single semaphore operations. cmd indicates
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which control operation is to be performed. arg is a pointer to a union for getting and setting control
options. semctl() returns -1 if an error is detected, or 0 or a positive integer if successful, depending
on cmd. The synopsis for semctl() follows:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, /* union semun arg */ ...);

union semun {

int val;

struct semid_ds *buf;

ushort *array;

};

The semctl() system call supports many di�erent commands. The table below de�nes and describes al
of the command available to semctl():

Standard IPC functions
IPC STAT Place status information into arg.stat

IPC SET Set ownership/permissions from arg.stat

IPC RMID Remove semaphore set from system

Single semaphore operations
GETVAL Return value of a semaphore
SETVAL Set value of a semaphore
GETPID Get PID of the last process to access a semaphore
GETNCNT Return number of processes waiting semval to increase
GETZCNT Return number of processes waiting semval to reach 0.

Set-based semaphore operations
GETALL Place all semvals into arg.array

SETALL Set all semvals from arg.array

An Example of Semaphores

Below is a set of library routines that illustrate the use of SVID semaphores and hide many of the
complexities of the semaphore system calls. Four functions have been created, each of which takes a
single argument.

initsem() creates a semaphore, taking they key for the semaphore as an argument and returning a

semaphore set identi�er. waitsem() is analoguous to the de�nition of wait given at the start of Section
3.3.6. postsem() is analoguous to the de�nition of signal, also given at the start of Section 3.3.6.
destsem() removes a semaphore from the system.

/* semaphore.h -- include file for semaphore library */

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <errno.h>

#include <unistd.h>

extern int errno;

#define SEMPERM 0600
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#define TRUE 1

#define FALSE 0

int initsem(key_t);

int postsem(int);

int waitsem(int);

void destsem(int);

/* semaphore.c -- source code for semaphore library */

#include "semaphore.h"

int initsem(key_t key) /* create a semaphore */

{

int status = 0;

int semid;

if ((semid = semget(key, 1, SEMPERM|IPC_CREAT|IPC_EXCL)) == -1) {

if (errno == EEXIST)

semid = semget(key, 1, 0);

} else

status = semctl(semid, 0, SETVAL, 1);

if (semid == -1 || status == -1) {

perror("initsem() failed");

return (-1);

} else

return semid;

}

int waitsem(int semid) /* wait on a semaphore */

{

struct sembuf p_buf;

p_buf.sem_num = 0;

p_buf.sem_op = -1;

p_buf.sem_flg = SEM_UNDO;

if (semop(semid, &p_buf, 1) == -1) {

perror("waitsem() failed");

exit(1);

} else

return (0);

}

int postsem(int semid) /* post to a semaphore */

{

struct sembuf v_buf;

v_buf.sem_num = 0;

v_buf.sem_op = 1;

v_buf.sem_flg = SEM_UNDO;

if (semop(semid, &v_buf, 1) == -1) {

perror("postsem() failed");
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exit(1);

} else

return (0);

}

void destsem(int semid) /* destroy a semaphore */

{

semctl(semid, 0, IPC_RMID, 0);

}

The program below illustrates the use of semaphore library above. It is a two process version of the \Hello
World" program that ensures \Hello" is printed before \World" by using semaphores for synchronisation.

/* sem_test.c -- demostrates use of the semaphore library */

#include <stdio.h>

#include <time.h>

#include "semaphore.h"

main(void)

{

int semid;

int pid;

key_t key;

key = ftok("~/.cshrc", 1);

semid = initsem(key);

pid = fork();

if (pid == 0) {

printf("Hello ");

postsem(semid);

exit(0);

} else {

waitsem(semid);

printf("World");

}

wait((int *) 0);

putchar('\n');

destsem(semid);

exit(0);

}

3.4 Exercises

1. Write a program that uses pipe(), dup(), fork() and exec() to redirect the output of the ps

UNIX command to a �le.

2. Write a program that uses shared memory and semaphores or messages to copy a �le. Your
program should utilise two processes: One for reading the source �le and another one for writing
the destination �le.
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Chapter 4

Threads

4.1 Introduction

A thread is a sequence of executable instructions. The traditional UNIX process can be viewed as a
thread. Solaris di�ers from the traditonal UNIX model of a process because a process consist of one or

more threads of executable code. The threads of a process in Solaris execute concurrently and share the
same address space.

All of the global data belonging to a process is viewed as shared memory by threads. That is, every
thread in a process can read and write to the processes global data. Local data in a function belonging
to a thread is not accessible to other threads, unless the data is declared static. Even then, two threads
must be executing the same function before the static data can be shared.

Threads provide several advantages over processes:

1. Creation of a new thread is rapid because it is not necessary to copy any context information.

2. Scheduling and dispatching threads belonging to the same process is rapid because the amount of
context information to change is minimal.

3. Shared memory, which is the most e�cient form of IPC, is an inherent feature of threads belonging
to a signle process.

Each thread belonging to a process has it's own signal mask, errno variable, and stack. Individual
threads can have di�erent scheduling priorities, and a concurrency level can be speci�ed per process,
which determines the number of threads that can execute in parallel on a multiprocessor computer.

Threads on Solaris are executed by Light Weight Processes (LWP's). An LWP can be used to execute
one or more threads, but each LWP can only execute a single thread at a time. The concurrency level
for a process is determined by the number of LWP's available to the process.

Unbound threads share a LWP. A bound thread has a LWP all to itself. The importantance of bound
threads will be discusses in the next chapter, which deals with real time processing.

4.2 The Threads Library

The threads library is contained in the �le libthread.a. To compile a threaded program you must
include the library like so:

gcc -o thr_example thr_example.c -lthread
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As an aside, use the gcc compiler over Sun's cc when it is available. It is a much faster compiler.

While every thread has it's own errno variable, the majority of the thread library routines return the
errno value if an error is detected. If no error is detected, then 0 is returned.

4.2.1 Thread Creation

The thr create() library routine creates a new thread of execution for the calling process. Every thread
has it's own thread identi�er, which is analogous to a processes PID. The synopsis for thr create is
given below:

#include <thread.h>

int thr_create(void *stk_b, size_t stk_sz, void *(*start)(void *),

void *arg, long flags, thread_t *new_thread);

The stk b and stl sz arguments to thr create() specify the base and size of the new threads stack
respectively. If stk b equals NULL and stl sz equals 0 then thr create() will automatically allocate a
stack of appropriate size the the new thread. start is a pointer to a function which acts like main() for
the thread. When start returns the thread temrinates. arg allows a single argument to be passed to
start when the thread �rst executes. flags determines the behaviour of the new thread. Any of the
following constants de�ned in thread.h can be ORed together to obtain a particular behaviour:

THR SUSPENDED Creates the thread but does not execute it.

THR DETACHED The thread is created detached.

THR BOUND The new thread is bound to its own LWP.

THR NEW LWP Causes a new LWP to be added to the pool of LWPs.

THR DAEMON The thread is marked as a daemon. The process will exit when all non-daemon threads
exit.

The new thread argument is a pointer to the thread t variable which stores the threads identi�er.

4.2.2 Thread Joining

The thr join() library routine is the parallel of the wait() system call for processes. thr join()

blocks until the thread indicated by wait for terminates. The synopsis for thr join() follows:

#include <thread.h>

int thr_join(thread_t wait_for, thread_t *departed, void **status);

A detached thread, which is created with the THR DETACHED 
ag set during thr create(), can not
be waited on with thr join(). If wait for equals (thread t) 0, then thr join() blocks until any
undetached thread terminates. If departed is not NULL, then the thread identi�er of the terminated
thread is stored in the location pointed to by departed. If status is not NULL then it points to the exit
status value of the terminated thread.

The following code illustrates the used of thr create() and thr join(). It creates a single thread
which prints out the numbers 0 to 10 and then exits.
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/* thr1.c -- demonstrates thread creation and joining */

#include <thread.h>

#include <unistd.h>

void start_routine(int p)

{

int i;

for (i = 0; i < p; ++i)

printf("i = %d\n", i);

}

main(void)

{

thread_t tid;

thr_create(NULL, 0, (void *) start_routine, (void *) 10, 0, &tid);

thr_join(tid, NULL, NULL);

}

4.2.3 Thread Termination

The thr exit() library routine is used to terminate a thread. It takes a single argument, which speci�es
the exit status for the thread. The exist status of a terminated thread can be determined by the threads
creator with the thr join() routine. The synopsis for thr exit() is provided below:

#include <thread.h>

void thr_exit(void *status);

4.2.4 Thread Concurrency

The concurrency level (the number of threads that can be executed concurrently) for a process can be re-
treived and set with thr getconcurrency()and thr setconcurrency() respectively. thr setconcurrency()

is used to add LWPs to the pool of available LWPs for the process. If a thread is created with the
THR NEW LWP 
ag set then the concurrency level is automatically incremented by 1. The synopsis for
these routines is given below:

#include <thread.h>

int thr_setconcurrency(int new_level);

int thr_getconcurrency(void );

4.2.5 Suspending and Resuming Threads

The thr suspend() and thr continue() library routines are used to suspend and continue thread
execution respectively. If the thread is created with the THR SUSPENDED 
ag, then it can be made to
start execution with thr continue(). The synopsis for these routines are provided below:

#include <thread.h>

int thr_suspend(thread_t tid);

37



int thr_continue(thread_t tid);

4.2.6 Thread Priorities

Thread priorities can be retreived and set by thr getprio() and thr setprio() respectively. Unlike
standard UNIX process priorities, thread priorities are �xed. Thread priorities range from 0 (lowest
priority) to MAXINT (highest priority). The synopsis for these routines is provided below:

#include <thread.h>

int thr_setprio(thread_t target_thread, int pri);

int thr_getprio(thread_t target_thread, int *pri);

thr getprio() stores the priority of target thread in the location pointed to by pri. thr setprio()

sets the priority of target thread to pri. target thread will preempt lower priority threads, and will
yield to higher priority threads.

4.2.7 Thread Synchronisation

The threads library supports four di�erent synchronisation primitives. they are:

� Mutual exclusion locks (mutex)

� Read-write locks (rw)

� Conditional variables (cond)

� Semaphores (sema)

We will only discuss mutual exclusion locks here. Refer to section 3T of the UNIX on-linw manual pages
for the details of the other synchronisation facilities provided by the threads library.

Mutual exclusion, or mutex locks, allow only one thread to access a resource at any time. There are �ve
library routines for manipulating mutex locks. The synopsis for these routines is given below:

#include <synch.h>

int mutex_init(mutex_t *mp, int type, void * arg);

int mutex_destroy(mutex_t *mp);

int mutex_lock(mutex_t *mp);

int mutex_trylock(mutex_t *mp);

int mutex_unlock(mutex_t *mp);

mutex init() initialises the mutex pointed to by mp. type may be one of the following constants de�ned
in synch.h:

USYNC PROCESS The mutex can be used to synchronise threads across process boundaries.

USYNC THREAD The mutex can only be used by the threads belonging to the process which created it.

mutex lock() blocks until no other thread is executing the critical region. It then locks the region and
unblocks. mutex trylock() tries to lock the mutex, but returns immediately if the lock has already
been set. mutex unlock() unlocks a locked mutex. mutex destroy() removes the mutex resource from
the system.
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The code below illustrates the use of mutex locks, thr getconcurrency(), and the THR NEW LWP 
ag of
thr create(). Four threads are created, each of which increment the global variable data eight times.
Since data must be adjusted in a critical region, a mutex lock is used to ensure exclusion.

/* thr2.c -- demonstrates mutexs and thread concurrency */

#include <thread.h>

#include <synch.h>

#include <unistd.h>

int data = 0; /* shared data */

mutex_t mp; /* mutual exclusion var */

void routine(void)

{

int i;

for (i = 0; i < 8; ++i)

{

mutex_lock(&mp);

data = data + 1;

mutex_unlock(&mp);

}

}

main(void)

{

thread_t tid[4];

int i;

printf("current concurrency level = %d\n", thr_getconcurrency());

mutex_init(&mp, USYNC_THREAD, NULL);

for (i = 0; i < 4; ++i)

thr_create(NULL, 0, (void *) routine, NULL, THR_NEW_LWP, &tid[i]);

printf("new concurrency level = %d\n", thr_getconcurrency());

for (i = 0; i < 4; ++i)

thr_join(tid[i], NULL, NULL);

mutex_destroy(&mp);

printf("data = %d\n", data);

}

4.3 Exercises

1. Write some code to experiment with the threads library semaphores. Try implementing a threaded
version of the \Hello world" program that uses semaphores for synchronisation. The threads
library routines which you will need to use are sema init(), sema destroy(), sema wait() and
sema post().

2. Examine the islandfind.c program which is available from the lecturer. It is a program that �nds
the largest 4-connected region of 1's in a binary matrix. The algorithm, although implemented
serially, is inherently parallel in nature. Modify the code so that the sweeps through the matrix
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are done in parallel by threads. You will need to use mutex locks or semaphores to synchronise
the threads execution.
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Chapter 5

Realtime Processing

5.1 Introduction

Solaris provides support for real time processing through scheduling classes. There are three types of
class, listed here in order of priority of execution:

1. RT { Real time class.

2. sys { System class.

3. TS { Time sharing class.

By default, user programs operate in the TS scheduling class. Kernel routines execute in the sys

scheduling class. Processes inherit their scheduling class from their creators. Scheduling classes can be
speci�ed at the user, group or process levels.

It is not possible change the scheduling class for a particular thread. The scheduling class for a thread
depends entirely on the scheduling class of the process that the thread belongs to.

Since scheduling classes are inherited, and user shells are by default of scheduling class TS, it is necessary
to make a system call to convert a user process to the RT scheduling class.

5.1.1 Changing Scheduling Classes

The priocntl() system call is used for changing a processes scheduling class, priority and time quantum.
These values can also be queried with priocntl(). The synopsis for priocntl() is as follows:

#include <sys/types.h>

#include <sys/procset.h>

#include <sys/priocntl.h>

#include <sys/rtpriocntl.h>

#include <sys/tspriocntl.h>

long priocntl(idtype_t idtype, id_t id, int cmd, /* cmd_struct arg */);

id is the PID, UID, GID, LWPID or SID of the process(es) to be a�ected. idtype is one of the following,
which determines what the value of id refers to:
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P PID Process ID of a single process.
P PPID Parent process ID.
P LWP LWP ID.
P PGID Process group ID.
P SID Session ID.
P CID Class ID.
P UID E�ective user ID.
P GID E�ective group ID
P ALL All processes.

The cmd argument speci�es the operation that priocntl() is to perform. The value of cmd determines the
type of structure that arg points to. cmd may be one of the following constants de�ned in priocntl.h:

cmd argument arg type function

PC GETCID pcinfo t get class ID and attributes
PC GETCLINFO pcinfo t get class name and attributes
PC SETPARMS pcparms t set class and scheduling parameters
PC GETPARMS pcparms t get class and scheduling parameters

If successful, priocntl() returns the following values:

� PC GETCID and PC GETCLINFO commands return the number of scheduling classes.

� PC SETPARMS returns 0.

� PC GETPARMS returns the PID of the process being queried.

The priocntl() routine retuns -1 if an error occurs.

The PC GETCID and PC GETCLINFO commands use the pcinfo structure (which is pointed to by the arg
parameter to priocntl()) to send and receive values:

typedef struct pcinfo {

id_t pc_cid; /* class ID */

char pc_clname[PC_CLNMSZ]; /* class name */

long pc_clinfo[PC_CLINFOSZ]; /* class information */

} pcinfo_t;

For the realtime class, pc clinfo contains an rtinfo structure which holds the maximumvalid realtime
priority:

typedef struct rtinfo {

short rt_maxpri; /* maximum realtime priority */

} rtinfo_t;

For the timesharing class, pc clinfo contains an tsinfo structure whic holds the maximum end-user
timesharing priority:

typedef struct tsinfo {

short rt_maxupri; /* limits of user priority range */

} tsinfo_t;

The PC GETPARMS and PC SETPARMS commands use the pcparms structure (which is pointed to by the
arg parameter to priocntl()) to send and receive values:
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typedef struct pcparms {

id_t pc_cid; /* process class */

long pc_clparms[PC_CLPARMSZ]; /* class specific info */

} pcparms_t;

For the realtime class, pc clparms contains an rtparms structure, de�ned below:

typedef struct rtparms {

short rt_pri; /* reatime priority */

ulong rt_tqsecs; /* seconds in time quantum */

long rt_tqnsecs; /* additional nsecs in quantum */

} rtparms_t;

For the timesharing class, pc clparms contains an tsparms structure w holds the scheduler parameters
speci�c to timesharing:

typedef struct tsparms {

short ts_uprilim; /* user priority limit */

short ts_upri; /* user priority */

} tsparms_t;

The code below illustrates how to change a processes scheduling call to realtime, and set the priority of
that process to the maximum allowable priority minus one. The executable takes a single command line
argument which is the PID of the process to be RT scheduled.

/* realtime.c -- change a processes scheduling class to RT */

#include <unistd.h>

#include <stdio.h>

#include <errno.h>

#include <string.h>

#include <sys/priocntl.h>

#include <sys/rtpriocntl.h>

#include <sys/tspriocntl.h>

id_t schedinfo(char *, short *);

int main(int argc, char *argv[])

{

pcparms_t pcparms;

rtparms_t *rtparmsp;

id_t pid, rtID;

short maxrtpri;

if ((pid = atoi(argv[1])) <= 0)

{

perror("bad pid");

exit(1);

}

/* determine max priority and RT class ID */

if ((rtID = schedinfo("RT", &maxrtpri)) == -1)

{

perror("schedinfo failed for RT");
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exit(2);

}

/* change PID to RT class scheduling, and set priority to maxrtpri - 1 */

pcparms.pc_cid = rtID;

rtparmsp = (struct rtparms *) pcparms.pc_clparms;

rtparmsp->rt_pri = maxrtpri - 1;

rtparmsp->rt_tqnsecs = RT_TQDEF;

if (priocntl(P_PID, pid, PC_SETPARMS, &pcparms) == -1)

{

perror("PC_SETPARMS failed");

exit(3);

}

}

/* schedinfo() -- returns class ID and maximum priority */

id_t schedinfo(char *name, short *maxpri)

{

pcinfo_t info;

tsinfo_t *tsinfop;

rtinfo_t *rtinfop;

(void) strcpy(info.pc_clname, name);

if (priocntl(0L, 0L, PC_GETCID, &info) == -1L)

return -1;

if (strcmp(name, "TS") == 0)

{

tsinfop = (struct tsinfo *) info.pc_clinfo;

*maxpri = tsinfop->ts_maxupri;

}

else if (strcmp(name, "RT") == 0)

{

rtinfop = (struct rtinfo *) info.pc_clinfo;

*maxpri = rtinfop->rt_maxpri;

}

else

return -1;

return info.pc_cid;

}

On yallara, the machine we are using for the course, the RT scheduling class has been disabled. This
can be veri�ed with the priocntl -l shell command.

5.1.2 Locking Memory

It is often desirable for the memory associated with a realtime process to be locked. Locked memory can
not be paged or swapped out of physical memory to disk. Locking the memory of a RT class process
guarantees a minimum process dispatch latency because all of the processes address space is located in
physical memory.

Under Solaris, there is a system-wide limit on how many pages can be locked simultaneously. The limit
is determined during the system boot sequence.
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There are three system calls that are used for locking memory. mlock() requests that one segment of
memory be locked. munlock() reverses the action of mlock(). mlockall() allows all of the address
mappings of a super-user process to be locked at once. Only processes with super-user priviledges have
permission to lock memory. The locks remain in place until they are speci�cally unlocked or the process
terminates.

5.1.3 High Performance I/O

The standard read() and write() systems calls are synchronous operations, at least as far as the process
using them is concerned. read() and write() do not return to the process until their tasks have been
completed.

It is not desirable for realtime processes to perform I/O synchronously. Solaris supports asynchronous
I/O operations via the aioread(), aiowrite(), aiocancel() and aiowait() system calls. These
routines place the I/O requests on a queue and return immediately. The kernel is then responsible for
processing the enqueued I/O requests in a timely fashion. Noti�cation of the completion of asynchronous
I/O operations are made to the process via a SIGIO signal being generated. Refer to the UNIX on-line
manual pages for the calls listed above for more details.

5.1.4 Timers

Often we need a process to execute speci�c code at regular time intervals when supporting realtime
processes. The getitimer() and setitimer() system calls allow up to four di�erent interval timer
types to be created. Solaris supports a timer resolution of 10 milliseconds. Whenever a timer expires a
signal is generated to notify the process.

The four di�erent timer types are described below:

ITIMER REAL Decrements the timer in real time. Generates a SIGALRM signal.

ITIMER VIRTUAL Decrements the timer only when the process is executing. Generates a SIGVTALRM

signal.

ITIMER PROF Decrements the time both in process virtual time and when the system is running on
behalf of the process. Generates a SIGPROF signal.

ITIMER REALPROF Decrements in real time. This is designed for pro�ling multithreaded programs. Does
not generate a signal.

5.2 Exercise

1. Write a clock program that makes use of getitimer(), setitimer() and gettimeofday().
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