
 [IP-spoofing Demystified]

 (Trust-Relationship Exploitation)

 by daemon9 / route / infinity

 for Phrack Magazine

 June 1996 Guild Productions, kid

 comments to route@infonexus.com

 The purpose of this paper is to explain IP-spoofing to the

masses. It assumes little more than a working knowledge of Unix and

TCP/IP. Oh, and that yur not a moron...

 IP-spoofing is complex technical attack that is made up of

several components. (In actuality, IP-spoofing is not the attack, but

a step in the attack. The attack is actually trust-relationship

exploitation. However, in this paper, IP-spoofing will refer to the

whole attack.) In this paper, I will explain the attack in detail,

including the relevant operating system and networking information.

 [SECTION I. BACKGROUND INFORMATION]

 --[The Players]--

 A: Target host

 B: Trusted host

 X: Unreachable host

 Z: Attacking host

 (1)2: Host 1 masquerading as host 2

 --[The Figures]--

 There are several figures in the paper and they are to be

interpreted as per the following example:

ick host a control host b

1 A ---SYN---> B

tick: A tick of time. There is no distinction made as to *how*

much time passes between ticks, just that time passes. It's generally

not a great deal.

host a: A machine particpating in a TCP-based conversation.

control: This field shows any relevant control bits set in the TCP

header and the direction the data is flowing

host b: A machine particpating in a TCP-based conversation.

In this case, at the first refrenced point in time host a is sending

a TCP segment to host b with the SYN bit on. Unless stated, we are

generally not concerned with the data portion of the TCP segment.

 --[Trust Relationships]--

 In the Unix world, trust can be given all too easily. Say you

have an account on machine A, and on machine B. To facilitate going

betwixt the two with a minimum amount of hassle, you want to setup a

full-duplex trust relationship between them. In your home directory

at A you create a .rhosts file: `echo "B username" > ~/.rhosts` In

your home directory at B you create a .rhosts file: `echo "A username"

> ~/.rhosts` (Alternately, root can setup similar rules in

/etc/hosts.equiv, the difference being that the rules are hostwide,

rather than just on an individual basis.) Now, you can use any of the

r* commands without that annoying hassle of password authentication.

These commands will allow address-based authentication, which will

grant or deny access based off of the IP address of the service

requestor.

 --[Rlogin]--

 Rlogin is a simple client-server based protocol that uses TCP

as it's transport. Rlogin allows a user to login remotely from one

host to another, and, if the target machine trusts the other, rlogin

will allow the convienience of not prompting for a password. It will

instead have authenticated the client via the source IP address. So,

from our example above, we can use rlogin to remotely login to A from

B (or vice-versa) and not be prompted for a password.

 --[Internet Protocol]--

 IP is the connectionless, unreliable network protocol in the

TCP/IP suite. It has two 32-bit header fields to hold address

information. IP is also the busiest of all the TCP/IP protocols as

almost all TCP/IP traffic is encapsulated in IP datagrams. IP's job

is to route packets around the network. It provides no mechanism for

reliability or accountability, for that, it relies on the upper

layers. IP simply sends out datagrams and hopes they make it intact.

If they don't, IP can try to send an ICMP error message back to the

source, however this packet can get lost as well. (ICMP is Internet

Control Message Protocol and it is used to relay network conditions

and different errors to IP and the other layers.) IP has no means to

guarantee delivery. Since IP is connectionless, it does not maintain

any connection state information. Each IP datagram is sent out without

regard to the last one or the next one. This, along with the fact that

it is trivial to modify the IP stack to allow an arbitrarily choosen IP

address in the source (and destination) fields make IP easily subvertable.

 --[Transmission Control Protocol]--

 TCP is the connection-oriented, reliable transport protocol

in the TCP/IP suite. Connection-oriented simply means that the two

hosts participating in a discussion must first establish a connection

before data may change hands. Reliability is provided in a number of

ways but the only two we are concerned with are data sequencing and

acknowledgement. TCP assigns sequence numbers to every segment and

acknowledges any and all data segments recieved from the other end.

(ACK's consume a sequence number, but are not themselves ACK'd.)

This reliability makes TCP harder to fool than IP.

 --[Sequence Numbers, Acknowledgements and other flags]--

 Since TCP is reliable, it must be able to recover from

lost, duplicated, or out-of-order data. By assigning a sequence

number to every byte transfered, and requiring an acknowledgement from

the other end upon receipt, TCP can guarantee reliable delivery. The

receiving end uses the sequence numbers to ensure proper ordering of

the data and to eliminate duplicate data bytes.

 TCP sequence numbers can simply be thought of as 32-bit

counters. They range from 0 to 4,294,967,295. Every byte of

data exchanged across a TCP connection (along with certain flags)

is sequenced. The sequence number field in the TCP header will

contain the sequence number of the *first* byte of data in the

TCP segment. The acknowledgement number field in the TCP header

holds the value of next *expected* sequence number, and also

acknowledges *all* data up through this ACK number minus one.

 TCP uses the concept of window advertisement for flow

control. It uses a sliding window to tell the other end how much

data it can buffer. Since the window size is 16-bits a receiving TCP

can advertise up to a maximum of 65535 bytes. Window advertisement

can be thought of an advertisment from one TCP to the other of how

high acceptable sequence numbers can be.

 Other TCP header flags of note are RST (reset), PSH (push)

and FIN (finish). If a RST is received, the connection is

immediately torn down. RSTs are normally sent when one end

receives a segment that just doesn't jive with current connection

(we will encounter an example below). The PSH flag tells the

reciever to pass all the data is has queued to the aplication, as

soon as possible. The FIN flag is the way an application begins a

graceful close of a connection (connection termination is a 4-way

process). When one end recieves a FIN, it ACKs it, and does not

expect to receive any more data (sending is still possible, however).

 --[TCP Connection Establishment]--

 In order to exchange data using TCP, hosts must establish a

a connection. TCP establishes a connection in a 3 step process called

the 3-way handshake. If machine A is running an rlogin client and

wishes to conect to an rlogin daemon on machine B, the process is as

follows:

 fig(1)

1 A ---SYN---> B

2 A <---SYN/ACK--- B

3 A ---ACK---> B

At (1) the client is telling the server that it wants a connection.

This is the SYN flag's only purpose. The client is telling the

server that the sequence number field is valid, and should be checked.

The client will set the sequence number field in the TCP header to

it's ISN (initial sequence number). The server, upon receiving this

segment (2) will respond with it's own ISN (therefore the SYN flag is

on) and an ACKnowledgement of the clients first segment (which is the

client's ISN+1). The client then ACK's the server's ISN (3). Now,

data transfer may take place.

 --[The ISN and Sequence Number Incrementation]--

 It is important to understand how sequence numbers are

initially choosen, and how they change with respect to time. The

initial sequence number when a host is bootstraped is initialized

to 1. (TCP actually calls this variable 'tcp_iss' as it is the initial

send sequence number. The other sequence number variable,

'tcp_irs' is the initial *receive* sequence number and is learned

during the 3-way connection establishment. We are not going to worry

about the distinction.) This practice is wrong, and is acknowledged

as so in a comment the tcp_init() function where it appears. The ISN

is incremented by 128,000 every second, which causes the 32-bit ISN

counter to wrap every 9.32 hours if no connections occur. However,

each time a connect() is issued, the counter is incremented by

64,000.

 One important reason behind this predictibility is to

minimize the chance that data from an older stale incarnation

(that is, from the same 4-tuple of the local and remote

IP-addresses TCP ports) of the current connection could arrive

and foul things up. The concept of the 2MSL wait time applies

here, but is beyond the scope of this paper. If sequence

numbers were choosen at random when a connection arrived, no

guarantees could be made that the sequence numbers would be different

from a previous incarnation. If some data that was stuck in a

routing loop somewhere finally freed itself and wandered into the new

incarnation of it's old connection, it could really foul things up.

 --[Ports]--

 To grant simultaneous access to the TCP module, TCP provides

a user interface called a port. Ports are used by the kernel to

identify network processes. These are strictly transport layer

entities (that is to say that IP could care less about them).

Together with an IP address, a TCP port provides provides an endpoint

for network communications. In fact, at any given moment *all*

Internet connections can be described by 4 numbers: the source IP

address and source port and the destination IP address and destination

port. Servers are bound to 'well-known' ports so that they may be

located on a standard port on different systems. For example, the

rlogin daemon sits on TCP port 513.

 [SECTION II. THE ATTACK]

 ...The devil finds work for idle hands....

 --[Briefly...]--

 IP-spoofing consists of several steps, which I will

briefly outline here, then explain in detail. First, the target host

is choosen. Next, a pattern of trust is discovered, along with a

trusted host. The trusted host is then disabled, and the target's TCP

sequence numbers are sampled. The trusted host is impersonated, the

sequence numbers guessed, and a connection attempt is made to a

service that only requires address-based authentication. If

successful, the attacker executes a simple command to leave a

backdoor.

 --[Needful Things]--

 There are a couple of things one needs to wage this attack:

 (1) brain, mind, or other thinking device

 (1) target host

 (1) trusted host

 (1) attacking host (with root access)

 (1) IP-spoofing software

Generally the attack is made from the root account on the attacking

host against the root account on the target. If the attacker is

going to all this trouble, it would be stupid not to go for root.

(Since root access is needed to wage the attack, this should not

be an issue.)

 --[IP-Spoofing is a 'Blind Attack']--

 One often overlooked, but critical factor in IP-spoofing

is the fact that the attack is blind. The attacker is going to be

taking over the identity of a trusted host in order to subvert the

security of the target host. The trusted host is disabled using the

method described below. As far as the target knows, it is carrying on

a conversation with a trusted pal. In reality, the attacker is

sitting off in some dark corner of the Internet, forging packets

puportedly from this trusted host while it is locked up in a denial

of service battle. The IP datagrams sent with the forged IP-address

reach the target fine (recall that IP is a connectionless-oriented

protocol-- each datagram is sent without regard for the other end)

but the datagrams the target sends back (destined for the trusted

host) end up in the bit-bucket. The attacker never sees them. The

intervening routers know where the datagrams are supposed to go. They

are supposed to go the trusted host. As far as the network layer is

concerned, this is where they originally came from, and this is where

responses should go. Of course once the datagrams are routed there,

and the information is demultiplexed up the protocol stack, and

reaches TCP, it is discarded (the trusted host's TCP cannot respond--

see below). So the attacker has to be smart and *know* what was sent,

and *know* what reponse the server is looking for. The attacker

cannot see what the target host sends, but she can *predict* what it

will send; that coupled with the knowledge of what it *will* send,

allows the attacker to work around this blindness.

 --[Patterns of Trust]--

 After a target is choosen the attacker must determine the

patterns of trust (for the sake of argument, we are going to assume

the target host *does* in fact trust somebody. If it didn't, the

attack would end here). Figuring out who a host trusts may or may

not be easy. A 'showmount -e' may show where filesystems are

exported, and rpcinfo can give out valuable information as well.

If enough background information is known about the host, it should

not be too difficult. If all else fails, trying neighboring IP

addresses in a brute force effort may be a viable option.

 --[Trusted Host Disabling Using the Flood of Sins]--

 Once the trusted host is found, it must be disabled. Since

the attacker is going to impersonate it, she must make sure this host

cannot receive any network traffic and foul things up. There are

many ways of doing this, the one I am going to discuss is TCP SYN

flooding.

 A TCP connection is initiated with a client issuing a

request to a server with the SYN flag on in the TCP header. Normally

the server will issue a SYN/ACK back to the client identified by the

32-bit source address in the IP header. The client will then send an

ACK to the server (as we saw in figure 1 above) and data transfer

can commence. There is an upper limit of how many concurrent SYN

requests TCP can process for a given socket, however. This limit

is called the backlog, and it is the length of the queue where

incoming (as yet incomplete) connections are kept. This queue limit

applies to both the number of imcomplete connections (the 3-way

handshake is not complete) and the number of completed connections

that have not been pulled from the queue by the application by way of

the accept() system call. If this backlog limit is reached, TCP will

silently discard all incoming SYN requests until the pending

connections can be dealt with. Therein lies the attack.

 The attacking host sends several SYN requests to the TCP port

she desires disabled. The attacking host also must make sure that

the source IP-address is spoofed to be that of another, currently

unreachable host (the target TCP will be sending it's response to

this address. (IP may inform TCP that the host is unreachable,

but TCP considers these errors to be transient and leaves the

resolution of them up to IP (reroute the packets, etc) effectively

ignoring them.) The IP-address must be unreachable because the

attacker does not want any host to recieve the SYN/ACKs that will be

coming from the target TCP (this would result in a RST being sent to

the target TCP, which would foil our attack). The process is as

follows:

 fig(2)

1 Z(x) ---SYN---> B

 Z(x) ---SYN---> B

 Z(x) ---SYN---> B

 Z(x) ---SYN---> B

 Z(x) ---SYN---> B

 ...

2 X <---SYN/ACK--- B

 X <---SYN/ACK--- B

 ...

3 X <---RST--- B

At (1) the attacking host sends a multitude of SYN requests to the

target (remember the target in this phase of the attack is the

trusted host) to fill it's backlog queue with pending connections.

(2) The target responds with SYN/ACKs to what it believes is the

source of the incoming SYNs. During this time all further requests

to this TCP port will be ignored.

 Different TCP implementations have different backlog sizes.

BSD generally has a backlog of 5 (Linux has a backlog of 6). There

is also a 'grace' margin of 3/2. That is, TCP will allow up to

backlog*3/2+1 connections. This will allow a socket one connection

even if it calls listen with a backlog of 0.

 AuthNote: [For a much more in-depth treatment of TCP SYN

flooding, see my definitive paper on the subject. It covers the

whole process in detail, in both theory, and practice. There is

robust working code, a statistical analysis, and a legnthy paper.

Look for it in issue 49 of Phrack. -daemon9 6/96]

 --[Sequence Number Sampling and Prediction]--

 Now the attacker needs to get an idea of where in the 32-bit

sequence number space the target's TCP is. The attacker connects to

a TCP port on the target (SMTP is a good choice) just prior to launching

the attack and completes the three-way handshake. The process is

exactly the same as fig(1), except that the attacker will save the

value of the ISN sent by the target host. Often times, this process is

repeated several times and the final ISN sent is stored. The attacker

needs to get an idea of what the RTT (round-trip time) from the target

to her host is like. (The process can be repeated several times, and an

average of the RTT's is calculated.) The RTT is necessary in being

able to accuratly predict the next ISN. The attacker has the baseline

(the last ISN sent) and knows how the sequence numbers are incremented

(128,000/second and 64,000 per connect) and now has a good idea of

how long it will take an IP datagram to travel across the Internet to

reach the target (approximately half the RTT, as most times the

routes are symmetrical). After the attacker has this information, she

immediately proceeds to the next phase of the attack (if another TCP

connection were to arrive on any port of the target before the

attacker was able to continue the attack, the ISN predicted by the

attacker would be off by 64,000 of what was predicted).

 When the spoofed segment makes it's way to the target,

several different things may happen depending on the accuracy of

the attacker's prediction:

- If the sequence number is EXACTly where the receiving TCP expects

it to be, the incoming data will be placed on the next available

position in the receive buffer.

- If the sequence number is LESS than the expected value the data

byte is considered a retransmission, and is discarded.

- If the sequence number is GREATER than the expected value but

still within the bounds of the receive window, the data byte is

considered to be a future byte, and is held by TCP, pending the

arrival of the other missing bytes. If a segment arrives with a

sequence number GREATER than the expected value and NOT within the

bounds of the receive window the segment is dropped, and TCP will

send a segment back with the *expected* sequence number.

 --[Subversion...]--

 Here is where the main thrust of the attack begins:

 fig(3)

1 Z(b) ---SYN---> A

2 B <---SYN/ACK--- A

3 Z(b) ---ACK---> A

4 Z(b) ---PSH---> A

 [...]

The attacking host spoofs her IP address to be that of the trusted

host (which should still be in the death-throes of the D.O.S. attack)

and sends it's connection request to port 513 on the target (1). At

(2), the target responds to the spoofed connection request with a

SYN/ACK, which will make it's way to the trusted host (which, if it

could process the incoming TCP segment, it would consider it an

error, and immediately send a RST to the target). If everything goes

according to plan, the SYN/ACK will be dropped by the gagged trusted

host. After (1), the attacker must back off for a bit to give the

target ample time to send the SYN/ACK (the attacker cannot see this

segment). Then, at (3) the attacker sends an ACK to the target with

the predicted sequence number (plus one, because we're ACKing it).

If the attacker is correct in her prediction, the target will accept

the ACK. The target is compromised and data transfer can

commence (4).

 Generally, after compromise, the attacker will insert a

backdoor into the system that will allow a simpler way of intrusion.

(Often a `cat + + >> ~/.rhosts` is done. This is a good idea for

several reasons: it is quick, allows for simple re-entry, and is not

interactive. Remember the attacker cannot see any traffic coming from

the target, so any reponses are sent off into oblivion.)

 --[Why it Works]--

 IP-Spoofing works because trusted services only rely on

network address based authentication. Since IP is easily duped,

address forgery is not difficult. The hardest part of the attck is

in the sequence number prediction, because that is where the guesswork

comes into play. Reduce unknowns and guesswork to a minimum, and

the attack has a better chance of suceeding. Even a machine that

wraps all it's incoming TCP bound connections with Wietse Venema's TCP

wrappers, is still vulnerable to the attack. TCP wrappers rely on a

hostname or an IP address for authentication...

 [SECTION III. PREVENTITIVE MEASURES]

 ...A stich in time, saves nine...

 --[Be Un-trusting and Un-trustworthy]--

 One easy solution to prevent this attack is not to rely

on address-based authentication. Disable all the r* commands,

remove all .rhosts files and empty out the /etc/hosts.equiv file.

This will force all users to use other means of remote access

(telnet, ssh, skey, etc).

 --[Packet Filtering]--

 If your site has a direct connect to the Internet, you

can use your router to help you out. First make sure only hosts

on your internal LAN can particpate in trust-relationships (no

internal host should trust a host outside the LAN). Then simply

filter out *all* traffic from the outside (the Internet) that

puports to come from the inside (the LAN).

 --[Cryptographic Methods]--

 An obvious method to deter IP-spoofing is to require

all network traffic to be encrypted and/or authenticated. While

several solutions exist, it will be a while before such measures are

deployed as defacto standards.

 --[Initial Sequence Number Randomizing]--

 Since the sequence numbers are not choosen randomly (or

incremented randomly) this attack works. Bellovin describes a

fix for TCP that involves partitioning the sequence number space.

Each connection would have it's own seperate sequence number space.

The sequence numbers would still be incremented as before, however,

there would be no obvious or implied relationship between the

numbering in these spaces. Suggested is the following formula:

 ISN=M+F(localhost,localport,remotehost,remoteport)

Where M is the 4 microsecond timer and F is a cryptographic hash.

F must not be computable from the outside or the attacker could

still guess sequence numbers. Bellovin suggests F be a hash of

the connection-id and a secret vector (a random number, or a host

related secret combined with the machine's boot time).

 [SECTION IV. SOURCES]

 -Books: TCP/IP Illustrated vols. I, II & III

 -RFCs: 793, 1825, 1948

 -People: Richard W. Stevens, and the users of the

 Information Nexus for proofreading

 -Sourcecode: rbone, mendax, SYNflood

This paper made possible by a grant from the Guild Corporation.

