[1P-spoofing Demystified]
(Trust-Relationship Expl oitation)

by daemon9 / route / infinity
for Phrack Magazine
June 1996 Guild Productions, kid

comments to route@i nfonexus.com

The purpose of this paper is to explain |P-spoofing to the
masses. It assumes little more than a working knowledge of Unix and
TCP/IP. Oh, and that yur not a moron...

I P-spoofing is complex technical attack that is made up of
several components. (In actuality, |P-spoofing is not the attack, but
astepintheattack. The attack is actually trust-relationship
exploitation. However, inthis paper, 1P-spoofing will refer to the
whole attack.) Inthis paper, | will explain the attack in detail,
including the relevant operating system and networking information.

[SECTION|I. BACKGROUND INFORMATION]

--[The Players]--

A: Target host

B: Trusted host

X: Unreachable host
Z: Attacking host

(1)2: Host 1 masquerading as host 2
--[The Figures]--

There are several figures in the paper and they areto be
interpreted as per the following example:

ick hosta control host b
1 A ---SYN---> B

tick: Atick of time. Thereisno distinction made asto *how*
much time passes between ticks, just that time passes. It's generally
not a great deal.

host a: A machine particpating in a TCP-based conversation.

control: This field shows any relevant control bits set in the TCP
header and the direction the data is flowing

host b: A machine particpating in a TCP-based conversation.

Inthis case, at thefirst refrenced point in time host ais sending
a TCP segment to host b with the SYN bit on. Unless stated, we are
generally not concerned with the data portion of the TCP segment.

--[Trust Relationships]--

In the Unix world, trust can be given all too easily. Say you
have an account on machine A, and on machine B. To facilitate going
betwixt the two with a minimum amount of hassle, you want to setup a
full-duplex trust relationship between them. Inyour home directory
at A you create a .rhostsfile: “echo "B username’ > ~/.rhosts In
your home directory at B you create a .rhostsfile: “echo "A username”
> ~/.rhosts’ (Alternately, root can setup similar rulesin
[etc/hosts.equiv, the difference being that the rules are hostwide,
rather than just on an individual basis.) Now, you can use any of the
r* commands without that annoying hasdle of password authentication.
These commands will allow address-based authentication, which will
grant or deny access based off of the IP address of the service
requestor.

--[Rlogin]--

Rloginisasimple client-server based protocol that uses TCP
asit'stransport. Rlogin allows a user to login remotely from one
host to another, and, if the target machine trusts the other, rlogin
will allow the convienience of not prompting for a password. It will
instead have authenticated the client via the source IP address. So,
from our example above, we can use rlogin to remotely login to A from
B (or vice-versa) and not be prompted for a password.

--[Internet Protocol]--

IPis the connectionless, unreliable network protocol in the
TCP/IPsuite. It has two 32-bit header fields to hold address
information. P isalso the busiest of all the TCP/IP protocols as
amost all TCP/IPtraffic is encapsulated in IP datagrams. IP'sjob
is to route packets around the network. It provides no mechanism for
reliability or accountability, for that, it relies on the upper
layers. 1P simply sends out datagrams and hopes they make it intact.
If they don't, IP can try to send an ICMP error message back to the
source, however this packet can get lost aswell. (ICMP isInternet
Control Message Protocol and it is used to relay network conditions

and different errorsto |P and the other layers.) IP hasno meansto
guarantee delivery. Since P is connectionless, it does not maintain
any connection state information. Each |P datagram is sent out without
regard to the last one or the next one. This, along with the fact that

it istrivial to modify the IP stack to allow an arbitrarily choosen IP
address in the source (and destination) fields make IP easily subvertable.

--[Transmission Control Protocol]--

TCP is the connection-oriented, reliable transport protocol
inthe TCP/IP suite. Connection-oriented simply means that the two
hosts participating in a discussion must first establish a connection
before data may change hands. Reliability is provided in a number of
ways but the only two we are concerned with are data sequencing and
acknowledgement. TCP assigns sequence numbers to every segment and
acknowledges any and all data segments recieved from the other end.
(ACK's consume a sequence number, but are not themselves ACK'd.)
Thisreiability makes TCP harder to fool than IP.

--[Sequence Numbers, Acknowledgements and other flags]--

Since TCPisrdiable, it must be able to recover from
lost, duplicated, or out-of-order data. By assigning a sequence
number to every byte transfered, and requiring an acknowledgement from
the other end upon receipt, TCP can guarantee reliable ddlivery. The
receiving end uses the sequence numbers to ensure proper ordering of
the data and to eliminate duplicate data bytes.

TCP sequence numbers can simply be thought of as 32-bit
counters. They range from 0 t0 4,294,967,295. Every byte of
data exchanged across a TCP connection (along with certain flags)
issequenced. The sequence number field in the TCP header will
contain the sequence number of the *first* byte of datain the
TCPsegment. The acknowledgement number field in the TCP header
holds the value of next *expected* sequence number, and also
acknowledges *all* data up through this ACK number minus one.

TCP uses the concept of window advertisement for flow
control. It uses a sliding window to tell the other end how much
data it can buffer. Since the window sizeis 16-bits areceiving TCP
can advertise up to a maximum of 65535 bytes. Window adverti sement
can be thought of an advertisment from one TCP to the other of how
high acceptable sequence numbers can be.

Other TCP header flags of note are RST (reset), PSH (push)
and FIN (finish). If aRST isreceived, the connectionis
immediately torn down. RSTs are normally sent when one end

receives a segment that just doesn't jive with current connection
(we will encounter an examplebelow). The PSH flag tellsthe
reciever to pass all the datais has queued to the aplication, as

soon aspossible. The FIN flag is the way an application begins a
graceful close of a connection (connection termination is a 4-way
process). When one end recieves a FIN, it ACKsit, and does not
expect to recelve any more data (sending is still possible, however).

--[TCP Connection Establishment]--

In order to exchange data using TCP, hosts must establish a
aconnection. TCP establishes a connection in a 3 step process called
the 3-way handshake. If machine A is running an rlogin client and
wishes to conect to an rlogin daemon on machine B, the processis as
follows:

fig(1)

1 A ---SYN---> B
2 A <---SYN/ACK--- B
3 A ---ACK---> B

At (1) theclient istelling the server that it wants a connection.
Thisisthe SYN flag's only purpose. Theclient istelling the

server that the sequence number field is valid, and should be checked.
The client will set the sequence number field in the TCP header to
it'sISN (initial sequence number). The server, upon receiving this
segment (2) will respond with it's own ISN (therefore the SYN flagis
on) and an ACK nowledgement of the clients first segment (whichisthe
client'sISN+1). Theclient then ACK'sthe server'sISN (3). Now,
data transfer may take place.

--[The ISN and Segquence Number Incrementation]--

It isimportant to understand how sequence numbers are
initially choosen, and how they change with respect totime. The
initial sequence number when a host is bootstraped isinitialized
to 1. (TCP actually callsthisvariable'tcp_iss asit istheinitial
send sequence number. The other sequence number variable,
'tcp_irs istheinitial *receive* sequence number and is learned
during the 3-way connection establishment. We are not going to worry
about the distinction.) This practice iswrong, and is acknowledged

as so in a comment the tcp_init() function where it appears. The ISN
isincremented by 128,000 every second, which causes the 32-bit ISN
counter to wrap every 9.32 hours if no connections occur. However,
each time a connect() isissued, the counter isincremented by
64,000.

Oneimportant reason behind this predictibility isto
minimize the chance that data from an older stale incarnation
(that is, from the same 4-tuple of the local and remote
| P-addresses TCP ports) of the current connection could arrive
and foul thingsup. The concept of the 2M SL wait time applies
here, but is beyond the scope of this paper. If sequence
numbers were choosen at random when a connection arrived, no
guarantees could be made that the sequence numbers would be different
froma previousincarnation. If some data that was stuck in a
routing loop somewhere finally freed itself and wandered into the new
incarnation of it's old connection, it could really foul things up.

--[Ports]--

To grant simultaneous access to the TCP module, TCP provides
auser interface called aport. Ports are used by the kernel to
identify network processes. These are strictly transport layer
entities (that isto say that 1P could care less about them).
Together with an |P address, a TCP port provides provides an endpoint
for network communications. Infact, at any given moment *all*
Internet connections can be described by 4 numbers: the source IP
address and source port and the destination | P address and destination
port. Serversare bound to 'well-known' ports so that they may be
located on a standard port on different systems. For example, the
rlogin daemon sits on TCP port 513.

[SECTION II. THE ATTACK]

...The devil finds work for idle hands....

--[Briefly...]--

| P-spoofing consists of several steps, which | will
briefly outline here, then explainin detail. First, the target host
ischoosen. Next, a pattern of trust is discovered, along with a
trusted host. Thetrusted host is then disabled, and the target's TCP
sequence numbers are sampled. The trusted host is impersonated, the
sequence humbers guessed, and a connection attempt is made to a
service that only requires address-based authentication. If

successful, the attacker executes a simple command to leave a
backdoor.

--[Needful Things]--

There are a couple of things one needs to wage this attack:

(2) brain, mind, or other thinking device
(2) target host

(2) trusted host

(2) attacking host (with root access)

(2) IP-spoofing software

Generally the attack is made from the root account on the attacking
host against the root account on thetarget. If the attacker is
going to all thistrouble, it would be stupid not to go for root.
(Since root access is needed to wage the attack, this should not

be anissue.)

--[IP-Spoofing isa'Blind Attack’]--

One often overlooked, but critical factor in IP-spoofing
isthefact that the attack isblind. The attacker is going to be
taking over the identity of a trusted host in order to subvert the
security of thetarget host. Thetrusted host is disabled using the
method described below. Asfar asthe target knows, it is carrying on
aconversation with atrusted pal. Inredlity, the attacker is
sitting off in some dark corner of the Internet, forging packets
puportedly from this trusted host whileit is locked up in a denial
of service battle. The IP datagrams sent with the forged | P-address
reach the target fine (recall that IP is a connectionless-oriented
protocol-- each datagram is sent without regard for the other end)
but the datagrams the target sends back (destined for the trusted
host) end up in the bit-bucket. The attacker never seesthem. The
intervening routers know where the datagrams are supposed to go. They
are supposed to go the trusted host. Asfar asthe network layer is
concerned, thisis where they originally came from, and thisis where
responses should go. Of course once the datagrams are routed there,
and the information is demultiplexed up the protocol stack, and
reaches TCP, it is discarded (the trusted host's TCP cannot respond--
see below). So the attacker has to be smart and *know* what was sent,
and *know* what reponse the server islooking for. The attacker
cannot see what the target host sends, but she can * predict* what it
will send; that coupled with the knowledge of what it *will* send,

allows the attacker to work around this blindness.

--[Patterns of Trust]--

After atarget is choosen the attacker must determine the
patterns of trust (for the sake of argument, we are going to assume
the target host *does* in fact trust somebody. If it didn't, the
attack would end here). Figuring out who a host trusts may or may
not beeasy. A 'showmount -€ may show where filesystems are
exported, and rpcinfo can give out valuable information as well.

If enough background information is known about the host, it should
not be too difficult. If all elsefails, trying neighboring IP
addressesin a brute force effort may be a viable option.

--[Trusted Host Disabling Using the Flood of Sins]--

Oncethetrusted host is found, it must be disabled. Since
the attacker is going to impersonate it, she must make sure this host
cannot receive any network traffic and foul thingsup. There are
many ways of doing this, the one | am going to discussis TCP SYN
flooding.

A TCP connectionisinitiated with a client issuing a
request to a server with the SYN flag oninthe TCP header. Normally
the server will issue a SYN/ACK back to the client identified by the
32-hit source addressinthe IP header. The client will then send an
ACK to the server (aswe saw in figure 1 above) and data transfer
can commence. Thereisan upper limit of how many concurrent SY N
requests TCP can process for a given socket, however. This limit
is called the backlog, and it is the length of the queue where
incoming (as yet incomplete) connections are kept. This queue limit
applies to both the number of imcomplete connections (the 3-way
handshake is not complete) and the number of completed connections
that have not been pulled from the queue by the application by way of
the accept() systemcall. If thisbacklog limit is reached, TCP will
silently discard all incoming SY N requests until the pending
connections can be dealt with. Therein lies the attack.

The attacking host sends several SY N requests to the TCP port
shedesiresdisabled. The attacking host also must make sure that
the source IP-address is spoofed to be that of another, currently
unreachable host (the target TCP will be sending it's response to
thisaddress. (1P may inform TCP that the host is unreachable,
but TCP considers these errors to be transient and leaves the
resolution of them up to I P (reroute the packets, etc) effectively
ignoring them.) The IP-address must be unreachable because the

attacker does not want any host to recieve the SY N/ACK s that will be
coming from the target TCP (this would result in a RST being sent to
the target TCP, which would foil our attack). The processisas
follows:

fig(2)

1 Z(x) ---SYN---> B
Z(x) ---SYN---> B
Z(x) ---SYN---> B
Z(x) ---SYN---> B
Z(x) ---SYN---> B

2 X <---SYN/ACK--- B
X <---SYN/ACK--- B

3 X <---RST--- B

At (1) the attacking host sends a multitude of SY N requests to the
target (remember the target in this phase of the attack isthe
trusted host) to fill it's backlog queue with pending connections.
(2) The target responds with SY N/ACKs to what it believesisthe
source of theincoming SYNs. During thistime all further requests
to this TCP port will be ignored.

Different TCP implementations have different backlog sizes.
BSD generally has a backlog of 5 (Linux has a backlog of 6). There
isalso a'grace margin of 3/2. That is, TCPwill alow up to
backlog*3/2+1 connections. Thiswill allow a socket one connection
evenif it calls listen with a backlog of O.

AuthNote: [For a much more in-depth treatment of TCP SYN
flooding, see my definitive paper on the subject. It coversthe
whole processin detail, in both theory, and practice. Thereis
robust working code, a statistical analysis, and a legnthy paper.
Look for it in issue 49 of Phrack. -daemon9 6/96]

--[Sequence Number Sampling and Prediction]--

Now the attacker needs to get an idea of where in the 32-bit
sequence number space thetarget's TCPis. The attacker connects to
a TCP port on the target (SMTP is agood choice) just prior to launching
the attack and completes the three-way handshake. The processis
exactly the same asfig(1), except that the attacker will savethe
value of the ISN sent by the target host. Often times, this processis
repeated several times and thefinal ISN sent isstored. The attacker
needs to get an idea of what the RTT (round-trip time) from the target
to her host islike. (The process can be repeated several times, and an
average of the RTT'siscalculated.) TheRTT isnecessary in being
ableto accuratly predict the next ISN. The attacker has the basdline
(thelast ISN sent) and knows how the sequence numbers are incremented
(128,000/second and 64,000 per connect) and now has a good idea of
how long it will take an |P datagram to travel across the Internet to
reach the target (approximately half the RTT, as most times the
routes are symmetrical). After the attacker has this information, she
immediately proceeds to the next phase of the attack (if another TCP
connection were to arrive on any port of the target before the
attacker was able to continue the attack, the ISN predicted by the
attacker would be off by 64,000 of what was predicted).

When the spoofed segment makes it's way to the target,
several different things may happen depending on the accuracy of
the attacker's prediction:

- If the sequence number is EXACTIy where the receiving TCP expects
it to be, the incoming data will be placed on the next available

position in the receive buffer.

- If the sequence number is LESS than the expected val ue the data
byteis considered a retransmission, and is discarded.

- If the sequence number is GREATER than the expected value but

still within the bounds of the receive window, the data byte is
considered to be a future byte, and is held by TCP, pending the

arrival of the other missing bytes. If a segment arriveswith a
sequence number GREATER than the expected value and NOT within the
bounds of the receive window the segment is dropped, and TCP will
send a segment back with the * expected* sequence number.

--[Subversion...]--

Here is where the main thrust of the attack begins:

fig(3)

1 Z(b) ---SYN---> A

2 B <--SYN/ACK-- A
3 Z(b) --ACK---> A
4 Z(b) ---PSH---> A

]

The attacking host spoofs her | P address to be that of the trusted

host (which should till be in the death-throes of the D.O.S. attack)
and sends it's connection request to port 513 on the target (1). At
(2), the target responds to the spoofed connection reguest with a
SYN/ACK, which will make it's way to the trusted host (which, if it
could process the incoming TCP segment, it would consider it an
error, and immediately send a RST to thetarget). If everything goes
according to plan, the SYN/ACK will be dropped by the gagged trusted
host. After (1), the attacker must back off for a bit to give the
target ample time to send the SYN/ACK (the attacker cannot see this
segment). Then, at (3) the attacker sends an ACK to the target with
the predicted sequence number (plus one, because were ACKing it).
If the attacker is correct in her prediction, the target will accept

the ACK. Thetarget is compromised and data transfer can
commence (4).

Generally, after compromise, the attacker will insert a
backdoor into the system that will allow a simpler way of intrusion.
(Oftena cat + + >> ~/.rhosts isdone. Thisisagood ideafor
several reasons. itis quick, allowsfor simple re-entry, and is not
interactive. Remember the attacker cannot see any traffic coming from
the target, so any reponses are sent off into oblivion.)

--[Why it Works]--

| P-Spoofing works because trusted services only rely on
network address based authentication. Since IP is easily duped,
address forgery isnot difficult. The hardest part of the attck is
in the sequence number prediction, because that is where the guesswork
comesinto play. Reduce unknowns and guesswork to a minimum, and
the attack has a better chance of suceeding. Even a machine that
wraps all it'sincoming TCP bound connections with Wietse Venema's TCP
wrappers, is still vulnerableto the attack. TCP wrappersrely ona
hostname or an IP address for authentication...

[SECTION IIl. PREVENTITIVE MEASURES]
..JA stichintime, savesnine...
--[Be Un-trusting and Un-trustworthy]--

One easy solution to prevent this attack is not to rely
on address-based authentication. Disable al the r* commands,
remove all .rhosts files and empty out the /etc/hosts.equiv file.
Thiswill force all usersto use other means of remote access
(telnet, ssh, skey, etc).

--[Packet Filtering]--

If your site has a direct connect to the Internet, you
can use your router to help you out. First make sure only hosts
on your internal LAN can particpate in trust-relationships (no
internal host should trust a host outside the LAN). Then simply
filter out *all* traffic from the outside (the Internet) that
puports to come from the inside (the LAN).

--[Cryptographic Methods]--

An obvious method to deter |P-spoofing isto require
all network traffic to be encrypted and/or authenticated. While
several solutions exist, it will be awhile before such measures are
deployed as defacto standards.

--[Initial Sequence Number Randomizing]--

Since the sequence numbers are not choosen randomly (or
incremented randomly) this attack works. Bellovin describes a
fix for TCP that involves partitioning the sequence number space.
Each connection would have it's own seperate sequence number space.
The sequence numbers would still be incremented as before, however,
there would be no obvious or implied relationship between the
numbering in these spaces. Suggested is the following formula:

| SN=M+F(local host,l ocal port,remotehost, remoteport)
Where M isthe 4 microsecond timer and F is a cryptographic hash.

F must not be computable from the outside or the attacker could
still guess sequence numbers. Bellovin suggests F be a hash of

the connection-id and a secret vector (a random number, or a host
related secret combined with the machine's boot time).

[SECTION IV. SOURCES]

-Books: TCP/IP lllustrated vals. I, 11 & 11
-RFCs: 793, 1825, 1948
-People: Richard W. Stevens, and the users of the

Information Nexus for proofreading
-Sourcecode: rbone, mendax, SY Nflood

This paper made possible by a grant from the Guild Corporation.

